Affiliation:
1. Humble Oil And Refining Co.
Abstract
Abstract
This paper presents numerical solutions of the equations describing the imbibition of water and the countercurrent flow of oil in porous rocks. The imbibition process is of practical importance in recovering oil from heterogeneous formations and has been studied principally by experimental means. Calculations were made for imbibition of water into both linear and radial systems. Imbibition in the linear systems was allowed to take place through one open, or permeable, face of the porous medium studied. In the radial system, water was imbibed inward from the outer radius. The effects on rate of imbibition of varying the capillary pressure and relative permeability curves, oil viscosity and the initial water saturation were computed. For each case studied, the rate of water imbibition and the saturation and pressure profiles were calculated as functions of time. The results of these calculations indicate that, for the porous medium studied, the time required to imbibe a fixed volume of water of a certain viscosity is approximately proportional to the square root of the viscosity of the reservoir oil whenever the oil viscosity is greater than the water viscosity. Results are also presented illustrating the effects on rate of imbibition of the other variables studied.
Introduction
The process of imbibition, or spontaneous flow of fluids in porous media under the influence of capillary pressure gradient s, occurs wherever there exist in permeable rock capillary pressure gradients which are not exactly balanced by opposing pressure gradients (such as those resulting from the influence of gravity). The importance of such capillary movement in the displacement of oil by water or gas was recognized in early investigations and described by Leverett, Lewis and True in 1942. Methods advanced by these authors for studying the process using dynamically scaled models were rendered more general and flexible by the research of later workers. The influence of capillary forces in laboratory water floods has also been discussed by several authors. While imbibition plays a very important role in the recovery of oil from normal reservoirs, Brownscombe and Dyes pointed out that imbibition might be the dominant displacement process in water flooding reservoirs characterized by drastic variations in permeability, such as in fractured- matrix reservoirs. In water-wet, fractured-matrix reservoirs, water will be imbibed from fractures into the matrix with a countercurrent expulsion of oil into the fractures. If the imbibition occurs at a sufficiently rapid rate, a very successful water flood can result; if the imbibition proceeds slowly the project might not be economically attractive. Scaled-model studies have demonstrated the vital importance of imbibition in secondary recovery in fractured reservoirs. It is therefore important in the evaluation of waterflooding prospects to develop a thorough understanding of the quantitative relationships of the factors which control the rapidity of capillary imbibition. The imbibition process serves reservoir engineers in still another important way by providing a technique for studying the wettability of reservoir core samples. Such experiments are usually conducted by observing the rate of expulsion of oil or water from core samples submerged in the appropriate fluid. Several papers have been published on the experimental techniques involved. Although Handy has recently published a method for calculating capillary pressures from experiments with gas-saturated cores, it has not yet been possible to deduce quantitative information regarding water-oil relative permeability and capillary pressure characteristics of the rock from the experimental results. Thus a technique is needed for studying the quantitative dependence of imbibition rate on oil and water viscosity, initial water saturation, relative permeability-saturation, and capillary pressure-saturation relations. The development of such information, including saturation and pressure profiles by laboratory experiments, would be very difficult.
SPEJ
P. 195ˆ
Publisher
Society of Petroleum Engineers (SPE)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献