Sand Consolidation by Enzyme Mediated Calcium Carbonate Precipitation

Author:

AlAhmari Manar1,Bataweel Mohammed1,AlHumam Abdulmohsen1,AlMajed Abdullah2

Affiliation:

1. Saudi Aramco

2. King Saud University

Abstract

Abstract Sand production from poorly consolidated reservoir formations has been a persistent problem in the petroleum industry. Sand production can cause erosion and corrosion to downhole and surface equipment's and loss of production. Several technologies are used to reduce sand production effects and subsequently maintain well production and safe operations. Such techniques include completion techniques, and in-situ chemical consolidation methods. The enzyme urease induced carbonate precipitation (EICP) is a reversible and environmentally friendly technique that can be used for sand consolidation. In EICP, urease enzyme catalyses the hydrolysis of urea in an aqueous solution, which results in ammonia and carbonic acid production. In the presence of calcium ions, the carbonate ions precipitate as calcium carbonate. It has been reported that urease enzyme starts losing its activity above 65 °C and thus this technology can only be applied in reservoirs with temperatures up to 65 °C. This study addresses an improved EICP method where protein is added and the technique can be applicable at high temperature reservoirs. Two EICP solutions were prepared, EICP control solution (solution 1) which contains urease enzyme, calcium chloride and urea and modified EICP solution (solution 2) which consists of urease enzyme, calcium chloride, urea and protein. Test specimens were made by mixing sand with EICP solution and allowed to cure at different temperatures ranging from 25°C to 130 °C. Additionally, XRD analysis was performed to identify the type of calcium carbonate polymorph. SEM imaging was carried out to visualize the morphology of the calcium carbonate precipitation in the sand specimens. Specimens treated with the solution containing protein (solution 2) had a high consolidation strength. As the temperature increases the strength of consolidation decreases in specimens treated with solution 2 and 1. However, the strength of consolidation of specimens treated with solution 2 that contains protein was considerably greater at all temperatures (up to 130 °C), than the strength of specimens treated with solution 1. Moreover, XRD analysis revealed that 70% of the calcium carbonate polymorph in solution 2 was calcite (which is the most stable polymorph). SEM images show that in the specimens treated with solution 2 the calcium carbonate precipitates at inter-particle contacts. The impact of these results include the use of the EICP protein technique as a downhole sand consolidation method in high temperature reservoirs. Furthermore, the addition of protein in the EICP solution can lead to a reduction in the concentration of substrate and enzyme required to achieve sand consolidation, and subsequently reduction in undesirable ammonium chloride. These advantages enhance the potential use of the EICP protein system for sand consolidation in high temperature reservoirs.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3