Forecasting Low Enthalpy Geothermal Heat Extraction from Saline Aquifers Under Uncertainty

Author:

Bayerl Mathias1,Ebner Marcus1,Clemens Torsten1

Affiliation:

1. OMV Exploration & Production GmbH

Abstract

Abstract District heating can be decarbonized by using low enthalpy geothermal heat. In this case study, water from a deep saline aquifer with a temperature of 90-110 °C is produced, heat extracted for district heating and the cold water re-injected into the aquifer. There are substantial subsurface uncertainties in the structure as well as porosity and permeability distribution of the saline aquifer that need to be addressed to optimize heat extraction under uncertainty. The deep saline aquifer characterization is based on 3D seismic and a limited number of wells. Hence, substantial uncertainty exists in porosity/permeability distribution and dynamic and thermal properties. To address the uncertainty, different geological concepts need to be evaluated and parameter ranges for geostatistical and poro-perm relationships need to be used. To cover the uncertainty range, we constructed 600 geological models all honoring the limited existing data. However, dynamically simulating all the geological models including the ranges for the thermal properties is usually too costly. We utilize a geo-screening workflow, which selects a subset of representative models based on dynamic (proxy) response, the workflow aims at keeping the same variability of the subset as for the full ensemble. This is achieved via a dimensionality reduction of the problem, by clustering of the models in multi-dimensional space. The centroids of these clusters are selected as representative models used for full-physics simulations to forecast heat extraction under uncertainty. To define a consistent method for selecting a representative subset of geologic realization we simulated the full ensemble and compared it to (i) subsets of different clustering approaches using static (heat in-place) and dynamic (tracer rate & flux pattern) proxy responses and (ii) subset sizes. The results of the workflow show that the tracer rate is a better metric for the selection of the cluster centroids compared with flux-pattern and in particular heat in place. For this case 20-40 geological realizations were sufficient to cover the uncertainty space for forecasting low enthalpy heat extraction. The suggested workflow allows for addressing the subsurface uncertainty in static and dynamic parameters making use of streamline simulation to reduce simulation costs. The resulting model ensemble can be used for field development planning of low enthalpy heat extraction under uncertainty.

Publisher

SPE

Reference39 articles.

1. Deep Geothermal Energy Production in Germany;Agemar;Energies,2014

2. The Vienna Basin;Arzmüller,2006

3. Ashat, A.; Ridwan, R.H.; Prabata, W.; Situmorang, J.; Alfina, AdityawanS. and R.F.Ibrahim. 2019. Numerical Simulation Update of Dieng Geothermal Field, Central Java, Indonesia. Proceedings 41st New Zealand Geothermal Workshop. Auckland. New Zealand. 25-27 November 2019.

4. Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacing;Babaei;Applied Energy,2019

5. Biagi, J.; Agarwal, R.K. and Z.Zhang. 2015. Simulation and optimization of enhanced geothermal systems using CO2 as a working fluid. Proceedings of the ICE – Energy 86. May 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3