The Application of Fractional Flow Theory to Enhanced Oil Recovery

Author:

Pope Gary A.1

Affiliation:

1. U. of Texas

Abstract

Introduction Fractional flow theory has been applied by various authors to waterflooding, polymer flooding, carbonated waterflooding, alcohol flooding, miscible flooding, steamflooding, and various types of surfactant flooding. Many of the assumptions made by these authors are the same and are necessary for obtaining simple analytical or graphical solutions to the continuity equations. Typically, the major assumptions, which are sometimes not stated explicitly, are:one dimensional flow in a homogeneous, isotropic, isothermal porous medium,at most, two phases are flowing,at most, three components are flowing,local equilibrium exists,the fluids are incompressible,for sorbing components, the adsorption isotherm depends only on one component and has negative curvature,dispersion is negligible,gravity and capillarity are negligible,no fingering occurs,Darcy's law applies,the initial distribution of fluids is uniform, anda continuous injection of constant composition is injected, starting at time zero. Several of these assumptions are relaxed easily. One of the most useful to relax is Assumption 12, continuous injection. The principles of chromatography can be applied to analyze the more interesting case of injecting one or more slugs. Most of these processes require slug injection of chemical or solvent to be economical. In fact, a lower bound on the slug size necessary to prevent slug breakdown can be obtained from a simple extension of fractional flow theory. In this and other extensions the common new feature is the need to evaluate more than one characteristic velocity. A second example of this is the extension of fractional flow theory from simultaneous immiscible two-phase flow (the classical Buckley-Leverett waterflood problem) to simultaneous immiscible three-phase flow (the classical oil/water/gas flow problem). A third example is the extension to nonisothermal cases. Here we need to consider the energy balance, mass balance, and velocity of a front of constant temperature. A fourth example is when one or more components are partitioning between phases. In all cases, mathematically, the extension is analogous to the generalization from the one-component adsorption problems (or two-component ion exchange problems with a stoichiometric constraint) to multicomponent sorption problems. The latter theory has been worked out in a very general way for many component systems using the concept of coherence. Pope et al. recently have applied this theory to reservoir engineering involving sorption problems. SPEJ P. 191^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3