An Effective Solution to Extend the ESP Run Life in Sour Fields

Author:

Al Khalifah Jawad Mansour1,Aleissa Mohammad Ahmed1,AlMutairi Khaled Mouawad1,Alquwizani Saud Abdulaziz1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Throughout the past decades, the Electrical Submersible Pumps (ESPs) have been deployed across different oil fields in an Arena of Artificial Fields. It was a proven fact that the typical run life of an ESP can exceed multiple years. However, that fact could be reversed especially in designated fields with high Hydrogen Sulfide (H2S) partial pressure; where specialized ESP design is required. The presence of the Hydrogen Sulfide (H2S) can result in various and vast forms of corrosion products attacking the ESP components which eventually resulted in an ESP shorter run life compared to average. Hydrogen Sulfide (H2S) can also react with formation water (H2O) and form Sulfuric Acid (H2SO4) or free Sulfur; which is another source of corrosion product affecting the installed ESP system. As part of continuous improvement in equipment's reliability, several Dismantle inspection and failure analysis (DIFA) were done for ESP premature failures to identify the root causes along with the recommendations and forward plan to enhance ESP run life. The results of these DIFAs indicated a common root cause of ESP failures are related to Hydrogen Sulfide (H2S) presence and well fluids entering the ESP internal components. In particular, the packer penetrator, Motor-Lead-Extension (MLE), and the pothead interface were found to be the main reasons. Consequently, an effort was rolled out to control the Hydrogen Sulfide (H2S) presences at these three locations in order to maintain the ESP reliability and prolong its run life. This presented paper will demonstrate the methodologies and fit-to-purpose ESP design that contributed in extending the ESP run life in a high Hydrogen Sulfide (H2S) pressure fields. Also, a captivated practice along with related technologies have been adapted for the sour environment which resulted in sustaining the ESP run life.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3