Machine Learning Techniques for Real-Time Prediction of Essential Rock Properties Whilst Drilling

Author:

Amadi K. W.1,Alsaba M. T1,Iyalla I.2,Prabhu R.2,Elgaddafi R. M.1

Affiliation:

1. Petroleum Engineering Department, Australian University, Kuwait City, Kuwait

2. School of Engineering, Gordon University, Aberdeen, United Kingdom

Abstract

Abstract Wellbore instability is the most significant incident during the drilling of production sections of most wells. Common problems such as wellbore collapse, tight hole, mechanical sticking, cause major delays in drilling time due to extended reaming and sidetracking in worst-case scenario. Geomechanical property of rock such as Unconfined Compressive Strength (UCS) affects wellbore stability, drilling performance and formation in-situ stresses estimation. Conventional methods used to estimate UCS requires either laboratory experiments or derived from sonic logs and the main drawbacks of these methods are the data and samples availability, high costs and time This paper presents an alternative technique of utilizing real-time drilling parameters and machine learning (ML) algorithm in the prediction of UCS thereby enabling timely drilling decisions. ML algorithm enables a system to learn complex pattern from the dataset during the training (learning) phase without any specified mathematical model and afterwards the trained model can predict through a model input. In this work, five ML models were used to predict UCS using offset well data from an already drilled wells. The models include; artificial neural network (ANN), CatBoost (CB), Extra Tree (ET), Random Forest (RF) and Support Vector Machine (SVM). The ML models were first trained with 1150 data points using a 70:30 percentage ratio for training and testing the model respectively. After that, 560 datapoints from a different well were used to validate the developed model. The real-time drilling parameters required included weight on bit, penetration rate, rotary speed, and torque. The analysis result revealed good match between the actual and predicted (UCS) with correlation coefficients for training and testing dataset; 0.970 and 0.70 and 0.85 and 0.77 for CatBoost and ANN respectively. The main added value of this approach is that these drilling parameters are readily available in real-time and timely drilling decisions can be modified to improve the drilling performance.

Publisher

SPE

Reference17 articles.

1. Prediction of rock mechanical parameters for hydrocarbon reservoirs using different artificial intelligence techniques;Abdulraheem,2009

2. New model for pore pressure prediction while drilling using artificial neural networks;Ahmed;Arab. J. Sci. Eng.,2018

3. Einige Beitrageder geophysics zur primadatenerfassung im Bergbau;Mitzer;Neue Bergbautechnik,1973

4. Prediction of rock strength using drilling data and sonic logs;Amani;Int J Comput Appl,2013

5. Application of artificial neural networks in prediction of uniaxial compressive strength of rocks using well logs and drilling data;Asadi;Proc Eng,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3