Qualifying Bit Influence on High-Frequency Torsional Oscillations Based on Full-Scale Laboratory Experiments

Author:

Armin Kueck1,Eliah Everhard1,Xu Huang1,Franklin Valbuena1,Hanno Reckmann2,John Bomidi1

Affiliation:

1. Baker Hughes, Drill Bits, The Woodlands, USA

2. Baker Hughes, Drilling Services, Celle, Germany

Abstract

AbstractHigh-Frequency-Torsional Oscillations (HFTO) generate dynamic loads that can damage drilling tools, resulting in, for example cracks, twist-offs or broken electronics. They are triggered by the interaction of bits and rocks and force operators to reduce rotary speed (RPM) and weight on bit (WOB) losing drilling performance in the process. Recently, a full-scale drilling test rig was proven to generate verified HFTO behavior under laboratory conditions (Everhard et. al. 2023). This rig allows for a comprehensive study of the influences of bit characteristics on HFTO for the first time. This paper presents methods to qualify bit features to suppress HFTO. Effective HFTO influencing properties are identified and discussed.The full-scale laboratory test rig drills rocks in a pressurized rock chamber. ROP, WOB, RPM, pressure, bit type and rock type can be varied. High-frequency measurement instrumentation, including new in-bit sensing, record the tangential accelerations and dynamic torque at various positions in the laboratory rig. The type of excited torsional vibrations match vibrations in the field indicating that learnings in the lab translate to the field. To study the influence of bit and operating parameters on HFTO, PDC-bits of varying design are used to drill rocks under varying pressures, RPMs and WOB. The data are used to develop evaluation methods to rank bit-rock combinations with regards to the stability and severity of the generated vibrations.Stability maps relating RPM, WOB, and vibration proved to be a good measure to reliably identify HFTO and rank bit-rock combinations and applied operating parameters, by their susceptibility to HFTO. Bit properties, such as cutter shape, cutter placement or rock type control the energy intake per vibration cycle and, hence, the excitation of torsional vibrations. The operating parameter space indicating stable drilling states can be maximized by properly choosing bit features. Rock types triggering HFTO are identified using segmented core tests. When HFTO is present and fully developed, the severity of vibrations scales with the angular velocity of the bit (RPM) but not with the WOB. If HFTO is absent, WOB and RPM act as an "on-off" switch to HFTO. The threshold of WOB and RPM triggering HFTO is established for bit-rock combinations. The stable operating zone can be influenced by adding damping devices to the BHA. The findings also result in recommendations for operating BHAs in the field.Studying HFTO in a full-scale laboratory environment using the presented methods enables the development of robust and reliable HFTO countermeasures. Major influences on HFTO are identified and scientifically proven; understanding these characteristics will result in HFTO suppressing bits and tools. Ultimately, HFTO mitigation allows drilling engineers to optimize drilling parameters and reduce drilling time while simultaneously decreasing tool-failure probability and associated NPT and costs.

Publisher

SPE

Reference23 articles.

1. Evolution of Drilling Dynamics Measurement Systems;Akimov;Society of Petroleum Engineers,2018

2. Experimental investigations of rate effects on drilling forces under bottomhole pressure;Amri;Petrol J. Sci. Eng.,2016

3. The Effect of Borehole Pressure on the Drilling Process in Salt;Curry;SPE Drill & Compl,2017

4. Everhard, E., Kueck, A., Huang, X., Lam, S., Heinisch, D., Reckmann, H., Bomidi, J., "Testing and Characterization of High-Frequency Torsional Oscillations in a Lab to Develop New HFTO Suppressing Solutions" (2023, March), SPE/IADC International Drilling Conference and Exhibition, Stavanger, Norway

5. Investigation of the cutting force response to a PDC cutter in rock using the discrete element method;Fu;Journal of Petroleum Science and Engineering,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3