2D-NMR Applications in Unconventional Reservoirs

Author:

Cao Minh C..1,Crary S..1,Zielinski L..1,Liu C. B.2,Jones S..2,Jacobsen S..3

Affiliation:

1. Schlumberger

2. Chevron

3. Southwestern Energy

Abstract

AbstractIn conventional reservoirs, 2D-NMR fluids evaluation targets the free fluid part of the total porosity with the assumption that the bound fluid is irreducible water. As such, pulse sequences are designed for long relaxing fluids, and the interpretation commonly assumes free diffusion of hydrocarbon molecules in water-wet pores. This is clearly not appropriate for unconventional reservoirs such as shale gas and shale oil where the fast-relaxing fluids of interest reside in the bound fluid region.We show a revised 2D-NMR model that focus on fast relaxing fluids. In unconventionals, the three causes of fast relaxation are: small pore size, heavy oils and wettability alteration. The fast relaxation has the following consequences with respect to diffusion. In small pores, fluids cannot diffuse freely, and hence, the free diffusion lines of water, gas and oil must be corrected accordingly. In heavy oils, the oil relaxation can be enhanced by a wettability change to an oil/mixed-wet system. Another case of hydrocarbon-wet systems is hydrophobic kerogen. Consequently, the oil diffusion line as a function of viscosity (T2) must also be modified before the 2D map interpretation. This can be accomplished within the framework of the restricted diffusion model previously applied to water and gas that captures both the effects of surface relaxation and geometric restriction to molecular motion.The results of the revised 2D-NMR model are shown through modeling and log examples in a shale gas reservoir and a shale oil reservoir. In real rocks, there is also a need to take into account simultaneously two models: an unconventional model as described above and a conventional model for long relaxing fluids associated with the matrix of the rock. The 2D-NMR log results are compared with lab results. Essentially, we show that adding diffusion and T1 information to standard T2 relaxation logs improves both the understanding and evaluation of unconventional reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3