Field Case Studies: Damage Preventions Through Leakoff Control of Fracturing Fluids in Marginal/Low-Pressure Gas Reservoirs

Author:

Paktinat J.1,Pinkhouse J. A.1,Williams C.1,Clark G. A.2,Penny G. S.3

Affiliation:

1. Universal Well Services Inc.

2. Phillips Production

3. CESI Chemical a Flotek Industries Co.

Abstract

Summary The primary purpose of surfactants used in stimulating sandstone reservoirs is to reduce surface tension and contact angle and provide leakoff control. However, many of these chemicals adsorb rapidly within the first few inches of the sandstone formations, reducing their effectiveness in deeper penetration. This phenomenon causes surfactants to adsorb or plate-out, reducing their effectiveness in post-fracturing fluid recovery. This study describes experimental and field-case studies of various surfactants used in the oilfield. Several different surfactants, including a nonionic ethoxylated linear alcohol, a nonyl phenol ethoxylate, an amphoteric, a cationic, and a microemulsion system were investigated to determine their adsorption properties when injected into a laboratory sandpacked column. A laboratory-simulated comparison study of commonly used surfactants and microemulsion was used to identify their leakoff and waterrecovery properties from gas wells. Field data collected from Bradford, Balltown, and Speechley sandstone formations confirmed experimental sandpacked column and core-flow investigations. Reservoirs treated with microemulsion fluids demonstrate exceptional water recoveries when compared with conventional surfactant treatments. Wellhead pressures, flowing pressures, and production data were collected and evaluated using a production simulator to show effective fracture lengths, damage surrounding the fractures, and drainage areas with various fluid systems. These investigations and presented case studies can be used to minimize formation damage.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3