Burst-Induced Stresses in Cemented Wellbores

Author:

Fleckenstein W. W.1,Eustes A. W.1,Miller M. G.1

Affiliation:

1. Colorado School of Mines

Abstract

Summary This paper presents the results of a finite element study of the resistance to burst pressure. Results from the 2D model quantify the effects of various mechanical properties of cement on a cemented wellbore. Comparison of the predicted stresses with experimental results demonstrated that ductile cement is far less likely to crack radially from high internal burst pressures than a brittle cement. It is demonstrated that the in-situ formation stresses acting on the cemented wellbore greatly affect the burst resistance of the cemented wellbore. The industry acknowledges that there is an increase in the burst resistance of cemented pipe vs. uncemented pipe; but the effects of cement and formation mechanical properties, and in-situ stresses are not well understood. This paper presents the results of a finite element study of the resistance of casing to internal burst pressure under a variety of conditions. This will provide for better design understanding of the stress conditions developed in casing under burst loading. 2D stress-distribution model results are presented in graphical and tabular format for a variety of geometrical and mechanical material properties of formations, cement slurries, and casing combinations. A better understanding of the true stress profile in cemented pipe allows for less expensive decisions concerning casing design parameters and safety-factor criteria. Applications using the burst resistance of the cemented pipe as a system as opposed to using the burst resistance of free pipe can include deeper drilling with thinnerwalled pipe, smaller rigs, and better casing integrity decisions for refracturing candidates.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3