Active Fault Detection by an Automatic Breakout Geometry Characterization Algorithm from Ultrasonic Borehole Imager

Author:

Heydari Gholanlo Hamid1ORCID,Nikkhah Majid2ORCID

Affiliation:

1. Faculty of Mining, Petroleum, and Geophysics Engineering, Shahrood University of Technology

2. Faculty of Mining, Petroleum, and Geophysics Engineering, Shahrood University of Technology (Corresponding author)

Abstract

Summary An underground stress state might be disturbed in an area, particularly adjusting to an active shear zone. Borehole breakouts (BOs) that appeared in a circular hole excavated in an inhomogeneous stress field might be tracked to identify the active shear zone. The present study aims to develop the breakout morphology analysis (BMA) algorithm to exploit the valuable attributes of borehole BOs including azimuth, width, and intensity (depth of elongation) of failure from wellbore ultrasonic imaging tools. In the current study, the extracted azimuthal information was surveyed to detect the active shear zone along the well. Ultrasonic data from five wells drilled in the doubly plunging Ahvaz Anticline located in Iran were collected for the purpose of algorithm verification. The multiwell correlation of the BOs’ azimuth generated by the algorithm in the Ahvaz Anticline suggests a shear plan dipping southwest-northeast direction is possibly active in the deep vertical wells. Similarly, the seismic reflection profile of the Ahvaz Anticline shows a track of detachment faulting system in the mid-Cretaceous sediments. The finding confirms that the raw ultrasonic traveling time is more applicable than other borehole image data, such as static and dynamic images of ultrasonic amplitude, in BO characterization.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3