A Practical Method for Minimum-Miscibility-Pressure Estimation of Contaminated CO2 Mixtures

Author:

Johns R.T.. T.1,Ahmadi Kaveh1,Zhou D..2,Yan M..2

Affiliation:

1. University of Texas

2. Chevron North America

Abstract

Summary Minimum miscibility pressure (MMP) is a key parameter in the design of gasfloods. Injection-gas compositions often vary during the life of a gasflood owing to reinjection and mixing of fluids in situ. Understanding the impact of the gas compositional changes on the MMP is essential to optimal design of fieldwide pressure management and carbon dioxide (CO2) use. Determining the MMP by slimtube or other methods for each possible variation in the gas-mixture composition is impractical. This paper gives an easy and accurate way to determine impure CO2 MMPs for variable field solvent compositions on the basis of just a few MMPs. Alternatively, the approach could be used to estimate the enrichment level required to lower the MMP to a desired pressure. The MMP-estimation method relies on determining the MMP for pure CO2 injection, and also for a few impure binary MMPs at small CO2-contaminant levels. The number of MMPs needed for the method is equal to the number of components in the injection gas. We use the method of characteristics (MOC) and our newly developed mixing-cell method to estimate the required MMPs, although any reliable MMP analytical or experimental method can be used. We demonstrate how to calculate MMPs for several multicomponent oils displaced by CO2 contaminated by mixtures of N2, CH4, C2, C3, and H2S. The results show that the predicted MMPs for a west Texas crude displaced by contaminated-CO2 injection streams are nearly linear over the range from pure-CO2 injection to any mole fraction combination of the five contaminants. The accuracy of the predicted MMPs is within ±15 psia of that from calculations using mixing-cell simulations, slimtube simulations, and slimtube experiments where available. For another example oil displacement by impure CO2, however, the linear trend in MMPs with contamination mole fractions is accurate only for total contamination levels less than approximately 20% mole fraction, but this is still within a useful range for CO2-gasflood design and optimization. We also examine the sensitivity of local displacement efficiency to dispersion for binary gas mixtures using 1D simulation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3