Measurement and Modeling of Solubility and Saturated-Liquid Density and Viscosity for Methane/Athabasca-Bitumen Mixtures

Author:

Nourozieh Hossein1,Kariznovi Mohammad1,Abedi Jalal1

Affiliation:

1. University of Calgary

Abstract

Summary In the steam-based recovery processes, the coinjected gas can dissolve and diffuse into bitumen or heavy oil for viscosity reduction. The equilibrium concentration and solubility of methane are governed by the complex interaction with the bitumen. Thus, it is necessary to know the quantitative effects of gas dissolution on bitumen viscosity, density, and phase behavior at elevated temperatures in which steam-based processes are applied. Thus, this study aims at providing necessary experimental data for methane/Athabasca bitumen over a wide range of temperatures and pressures (up to 190°C and 10 MPa); that is, conditions that approach the temperatures at in-situ steam processes. Our previously designed phase-behavior experimental apparatus was used to measure the solubility of methane in Athabasca bitumen and its corresponding saturated-phase properties. Then, the measured solubility and density data were modeled with the Peng-Robinson equation of state (EOS) (Robinson and Peng 1978). The results indicate that the effect of temperature on the solubility profile of the methane/Athabasca-bitumen mixture is negligible at high temperatures and there is a distinct difference in the solubility data at 50°C compared with other isotherms (100, 150, and 190°C). Therefore, a reduction in viscosity at higher temperatures is much lower compared with a similar reduction at low temperature (50°C). There is a linear relationship between the methane-saturated viscosity and pressure for all temperatures in a semilog plot. The EOS modeling results also show that temperature-dependent binary-interaction parameters and volume-translation values should be considered to match density and solubility data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3