Application of Air-Mercury and Oil-Air Capillary Pressure Data In the Study of Pore Structure and Fluid Distribution

Author:

Pickell J.J.1,Swanson B.F.2,Hickman W.B.3

Affiliation:

1. Shell Oil Co.

2. Shell Development Co.

3. Shell Canada Ltd.

Abstract

Abstract Many physical properties of the porous media-immiscible liquid system are dependent upon the distribution of fluids within the pores; this in turn, is primarily a function of pore structure, liquid-liquid interfacial tension and liquid-solid wetting conditions. The capillary pressure hysteresis process provides a means of investigating the influence of pore structure upon fluid distribution for consistent surface conditions. Investigations indicate that residual non-wetting-phase saturations following the imbibition process (i.e., wetting phase displacing non-wetting phase) are dependent upon both pore structure and initial non-wetting phase saturation and suggest that residual fluid is distributed to discontinuous globules, one to a few pore sizes in dimension, through the entire range of pore sizes originally occupied. It appears that air-mercury capillary pressure data adequately reflect the distribution of fluids in a water-oil system when strong wetting conditions prevail. An oil-air counter-current imbibition technique has also been found to provide a rapid means of obtaining residual-initial saturation data. In a majority of cases, residual saturations determined from the oil-air or air-mercury process reasonably approximate residual oil and saturation following water drive of a strongly water-wet medium. Introduction A reliable estimate of recoverable reserves depends not only on the amount of original oil-in-place but also on pore geometry and distribution of fluids within the pores. A critical parameter determining the recovery from a reservoir under waterflood, for example, is the amount and distribution of residual oil within the various rock types present. The purpose of this paper is to investigate the mechanism of capillary trapping and assess its importance in laboratory measurements of residual oil saturation. The degree of wettability of a reservoir rock is recognized as an important factor in waterflood or imbibition experiments. In this paper, however, only the water-wet case has been considered. Considerable experimental evidence1 suggests that for water-wet rocks, capillary forces predominate in the distribution of fluids and that viscous forces in the range normally of interest in the reservoir have a minimum influence on residual oil saturation. It follows that if the ultimate recovery is controlled by pore geometry, a unique residual non-wetting phase saturation should exist for a given set of initial conditions. Two laboratory procedures found to be extremely useful in the study of pore structure and degree of fluid interconnection at various saturations are described. Although air-mercury capillary injection curves have been used2 previously to characterize the drainage case, the withdrawal or imbibition case can provide valuable supplementary data. The air-mercury process, however, has several disadvantages; it is difficult to run in a sufficiently accurate manner, mercury does not always act as a strongly non-wetting liquid and in the air-mercury process the sample is rendered unsuitable for future analyses. An alternative process is described in which air is the non-wetting phase and naptha, heptane, octane or toluene is the wetting phase. Interfacial Tension and Capillary Pressure Interfacial tension between immiscible fluids is due to the difference in attraction of like molecules as compared with their attraction to molecules of the neighboring fluid. This net attraction results in a tension at the interface. To extend the interface; thus, interfacial tension s can also be thought of as free surface energy. Interfacial tension is normally expressed as dynes/cm, and interfacial energy is measured in ergs/cm2 hence, both have dimensions mLt-2 and are numerically equal.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3