Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Design Optimization

Author:

Groulx Bertrand1,Gouveia Jim2,Chenery Don1

Affiliation:

1. Verdazo Analytics

2. Rose & Associates

Abstract

Abstract Efforts to identify optimal completion technology and design parameters are complicated by the compounding impacts of broad statistical variability in operations, reservoir/fluid and completion/wellbore design. There are several analysis approaches available to identify and optimize key completion design parameters. Each approach offers limited insight on its own, but combining a set of approaches into a disciplined methodology can collectively present a unique understanding of optimal completion technology and design. Traditional parallel coordinates visualizations offer strong visual cues of correlations, but in datasets with broad statistical variability they often convey a lack of correlation and fail to distinguish statistical trends. Statistical methods are unique in their ability to provide insights into non-continuous correlations where upper and lower thresholds exist; however, they are not effective at providing a deterministic measure of an individual input's effect on an outcome. Modelling and regression analysis can provide a means to measure the effect of several input variables on an outcome, but lack transparency and are often perceived as a "black box" solution with outcomes that have limited supporting evidence, or supporting evidence that is difficult to understand. We demonstrate a robust multivariate analysis methodology using a hybrid approach involving the principles of parallel coordinates, dimensional normalization and advanced probabilistic techniques. One of the benefits of this approach is that it can yield statistically significant insights on sample sets as small as 80 wells. The methodology involves six steps that offer transparency to the analysis and facilitate a narrative of understanding: Selection of a performance measure setAnalogue well selectionSelection of numerical completion design input parametersParallel Coordinates Distributions: input parameter impact analysisEvaluation of analogue fitness and subset selectionInput Optimization Distributions: input optimization process We found that the use of consistent dimensional normalization on both inputs and outcomes better isolates the impact of an input parameter. The shape and position of parallel coordinates distributions can illustrate nuances of impact that are lost in other multivariate approaches. In this paper we apply and test this methodology on three major resource plays in the Western Canadian Sedimentary Basin: a gas play, a liquids-rich gas play and an oil play.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3