A New, Accurate and Simple Model For Calculation of Horizontal Well Productivity in Gas and Gas Condensate Reservoirs

Author:

Ghahri P..1,Alatefi S..2,Jamiolahmady M..3

Affiliation:

1. Maerskoil UK North Sea,

2. CTS

3. Heriot-Watt University

Abstract

Abstract Horizontal wells are a proven and well acknowledged technology to enhance well productivity through an increase in reservoir contact compared to that of a vertical well under the same conditions. In the last three decades, a considerable effort has been directed to study flow around horizontal wells by many investigators. These studies have mainly focused on proposing practical tools (in the form of skin factor) for long-term well productivity estimation. The skin factor proposed can be applied in an equivalent (one dimensional radial) open-hole system replicating the flow around the actual complex three dimensional (3-D) flow geometry of the Horizontal well. However, all these studies concentrate on single-phase Darcy flow conditions. In gas condensate reservoirs, in addition to the three dimensional (3-D) nature of flow geometry, the flow behavior is further complicated by the phase change and the variation of relative permeability (kr) due to the coupling (increase in kr by an increase in velocity or decrease in IFT) and inertia (a decrease in kr by an increase in velocity) effects. Therefore, simulating such a complex 3-D flow using numerical commercial simulators requires a three dimensional fine grid compositional approach, which is very impractical, cumbersome and sometimes trigger convergence problems due to numerical instability. In fact, the introduction of a quick and reliable tool for long term productivity calculation is much needed in such systems. This work is aimed at the development of a practical, general, and easy-to-use method for defining an effective wellbore radius of an equivalent open-hole system, replicating flow around the 3-D Horizontal well in gas condensate reservoirs. Accordingly, a 3-D compositional finite element based in-house simulator was developed to accurately model gas and gas condensate flow around horizontal wells. A large data bank was generated, covering the impact of a wide range of pertinent geometric and flow parameters on the well performance. Then a general approach is proposed for estimation of an effective wellbore radius of an equivalent open-hole radial 1-D system replicating flow around the 3-D Horizontal well system. The effective wellbore radius varies with fluid properties, velocity, IFT, reservoir and wellbore conditions. The results of the proposed formulation, which benefits from suitable dimensionless numbers, has been tested against the simulator results not used in its development confirming the integrity of the approach. Also, the proposed formulation is applicable for both single-phase non-Darcy and two-phase gas condensate flow systems. With this approach, no numerical simulation is needed and instead a simple excel spread-sheet can predict the horizontal well performance, significantly facilitating engineering and management decisions relating to the application of horizontal well technologies.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3