Parallel Unstructured-Solver Methods for Simulation of Complex Giant Reservoirs

Author:

Fung Larry S. K.1,Dogru Ali H.1

Affiliation:

1. Saudi Aramco

Abstract

Summary The major issues for parallel solvers in a modern reservoir simulator are robustness, scalability, efficiency, and flexibility. There is significant interest in running fast field-scale simulations for complex giant Middle Eastern reservoirs, which will require tens of millions to hundreds of millions of grid cells to give reasonable resolution. At the same time, significant geologic complexity will require the treatment of dual-permeability regions, faulting and fractures, and high variations of reservoir and fluid properties. Of course, the methods should also work well for extracted-sector simulation with local grid refinements in both the structured and unstructured discretization. The preconditioning methods considered in this work include both the single-stage and multistage frameworks. In the single-stage framework, a novel method is considered in addition to the well-known variants of incomplete lower-upper (ILU) factorizations [ILU0, ILU(k), and ILUT]. The new method is a highly parallel method, which, in this paper, will be referred to as the unstructured line-solve power-series (LSPS) method. The method will be discussed and contrasted in light of key issues for parallel linear solvers. The unstructured LSPS has certain interesting properties in the parallel construct, which make it a highly effective component. The multistage method researched in this work is of the constraint pressure residual (CPR) framework. The method uses approximate pressure solve as the first-stage preconditioning to the full-system preconditioning. A number of original adaptations based on this concept were researched. Here, the use of the parallel algebraic multigrid (PAMG) method and other single-level methods mentioned previously in combinations within the multistage CPR framework were explored. Certain methods constructed in this way are found to be highly efficient, scalable, and robust. The methods developed are discussed, and several test problems are included, in this paper. The largest simulation model tested to date using these solver methods is a 172-million-cell full-field model of a supergiant carbonate complex with more than 3,000 wells and 60 years of history simulation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3