Large-Scale Testing and Modeling for Cement Zonal Isolation in Water-Injection Wells

Author:

Therond Emmanuel1,Bois Axel-Pierre2,Whaley Kevin1,Murillo Rodrigo1

Affiliation:

1. BP

2. CURISTEC

Abstract

Summary Water injection into soft sand is a global industry challenge because of the complex problem of maintaining sustained water-injection rates into the desired reservoir. Drilling, cementing, and completion engineers are addressing each technical and operational aspect of water injectors, including cement isolation. Cement serves as a barrier during well construction through to post-abandonment. It contributes to ensuring that no out-of-zone water injection occurs because of flow behind casing. If water does go out of zone, new drilling hazards that are a result of water breaching and a loss of reservoir management will occur. At present, as far as we know, the industry does not have a systematic methodology for defining and verifying the required physical and mechanical properties of the cement to endure water-injection service and to retain its isolation capability during well life. Cement-integrity simulators (CISs) provide different answers, mainly because they all assume a different initial stress-state in the cement after hydration. As a consequence, a new CIS model that computes this stress state has been developed, along with a large-scale testing setup to validate its predictions. The new model incorporates key-design parameters of effective CIS models: (1) The initial stress state after cement hydration is computed; (2) varying loadings that the cement sheath is submitted to are simulated; (3) the elasticity, plasticity, and failure of materials are taken into account; (4) the simulations are fast enough to facilitate sensitivity analysis; and (5) the model outputs allow the visualization of cement integrity across the entire length of the cement sheath, adjacent to reservoirs and to seals. Parallel to the modeling work, a large-scale test apparatus was built to evaluate cement zonal isolation under water-injection pressure and temperature conditions. Its objective was to generate pressure and temperature cycles inside sections of cemented casing assemblies to replicate the conditions of pressure and temperature variations in a water-injection well. The results of the test confirmed the accuracy of the new CIS model. They also showed that cooling because of water injection had a bigger impact on cement integrity than increasing pressure. In addition, the results showed that microannulus generation had more effect than tensile cracking in terms of cement-barrier-permeability increase.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3