Continuous High-Frequency Measurements of the Drilling Process Provide New Insights Into Drilling-System Response and Transitions Between Vibration Modes

Author:

Bowler Adam1,Harmer Richard1,Logesparan Lojini1,Sugiura Junichi1,Jeffryes Ben1,Ignova Maja1

Affiliation:

1. Schlumberger

Abstract

Summary The oil-and-gas industry has become increasingly interested in drilling dynamics and vibration as causes of drilling inefficiency and reduced drilling performance. Generally, drillstring vibration is measured with shock-and-vibration sensors installed in measurement-while-drilling (MWD) tools, logging-while-drilling (LWD) tools, and rotary steerable systems (RSS). Although these tools provide valuable real-time and recorded-mode information on the dynamic conditions, they are not generally designed to capture continuous high-frequency (HF) mechanics and dynamics data, and burst data may miss important information about the evolution of the system response and state. A downhole mechanics measurement tool has been developed that makes a comprehensive suite of measurements of the drilling process, including forces, accelerations, rotational speed, pressures, and temperatures. In addition to providing information in real time, the tool has the capability to capture long durations of continuous data at frequencies between 50 and 2,000 Hz. The recorded-mode information obtained has provided significant insight into the response of the drilling system to starting rotation; drilling procedures and parameter modifications; and exposure to excitation from sources including, but not limited to, rig heave, bottomhole-assembly (BHA) component imbalance, and bit/rock interaction. A wide range of occurrences has been captured in which the drilling system switches from a dominant vibration mode, typically torsional (downhole rotation-velocity oscillations or stick/slip) into a different mode, such as axial (bit bounce) or lateral (whirl). Transitions between different types of whirl have also been recorded. Several cases were studied to investigate the evolution and response of drilling-system behavior on the basis of in-depth interpretation of relatively long durations (minutes to hours) of HF data sets in the operational context. The findings verify the value of using continuous HF vibration data to understand the drilling system and to increase drilling performance.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3