Large Multilayered Tight Gas Condensate Field Development Optimization with Integrated Assessment of Subsurface Data and Surface Evacuation Options: A Case Study in the Sultanate of Oman

Author:

Saroj Vikram Singh1,Al Zadjali Faris Said1,Calvert Stephen John1,Al Hattali Ahmed Salim1,Al Rawahi Mohamed1,Hussain Abid1,Al Kharusi Dawood1

Affiliation:

1. Petroleum Development Oman

Abstract

Abstract This paper discusses the further development of Burhaan West Field, a complex multilayered onshore tight gas reservoir that is one of the largest in the Sultanate of Oman. After several years of production through vertical comingled fractured wells, the foreseen decline below production target triggered an integrated assessment of the field. After considering various subsurface development and surface evacuation options, an opportunity for further field development at minimum cost was identified and selected. The integrated assessment of the field for further development optimization included the following work-streams: Interdisciplinary data analysis to determine the critical elements of the recovery process.Building a range of integrated models capturing the subsurface complexity and diversity of rock properties.Optimized well type and spacing which focused on the advantages of infill drilling for improved aerial/vertical drainage.Phased development along with de-risking of the newly proposed areas.Decision based integrated production modelling to screen various evacuation options.Cost optimizationThe development of a Well Reservoir and Facility Management (WRFM) strategy. The proposed optimized field development enhances the field gas production capacity by 50%, while increasing ultimate recovery by 24%. This is achieved at low surface development cost, utilizing existing facilities, through infill drilling in the Core area and development of the Extension area. The conducted work highlighted the following key aspects of developing a tight gas reservoir: Integrated cross-discipline data analysis is required to identify the critical elements contributing to gas and condensate recovery processes. In the Burhaan Field, this has revealed the presence of key marginally resolvable to sub-seismic features that were not previously identified.Integrated Assessment (Integrated Production Modelling) enables for robust and quick evaluation of a variety of surface development options (e.g. evacuation routes and capacity) that is a key in achieving significant project cost optimization.Large gas field developments generally benefit from a phased development approach, where newly proposed areas can be de-risked while high confidence areas are being developed.A comprehensive WRFM plan is a key component of field development. This plan focuses on the activities required to address the field specific uncertainties and associated risks. It needs to be strictly implemented to ensure the delivery of promised volumes. This case study shares the insights on the challenges faced in developing multi-layered tight gas fields. It highlights how development decisions need to be governed by field specific characteristics that can be identified through multi-disciplinary integrated data analysis. The paper also provides an example of an effective Production Modelling workflow to screen through surface development options and demonstrates how focused data acquisition and specific WRFM activities can be embedded into tight gas developments.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3