Effects of High-Speed Pipe Rotation on Pressures in Narrow Annuli

Author:

McCann R. C.1,Quigley M. S.1,Zamora M.2,Slater K. S.2

Affiliation:

1. Mobil E&P Technical Center

2. M-IDrilling Fluids

Abstract

Abstract Variations in annular geometry, eccentricity, and pipe rotational speed strongly affect pressure loss of a fluid flowing in the narrow annulus of a slimhole well. Due to these factors, accurately calculating and controlling pressures in slimhole wellbores are difficult. Accurate pressure calculations are crucial for safely controlling formation pressures and protecting wellbore integrity. Attempts to model non-Newtonian fluid flow in narrow annuli with high-speed pipe rotation have been hampered by the lack of quality data. The results of numerous annular flow experiments presented herein partially correct this deficit. These results supplement annular pressure data from a 2500-ft slimhole test well and standpipe pressure data from a slimhole exploration well. Sensitive pressure measurements were used to characterize fluid flow in concentric narrow annuli created by a 1.25-in. diameter (Dp) steel shaft inside clear acrylic tubes with 1.375-in. to 1.75-in. inside diameter (Dh). Similar tests were conducted in a fully eccentric annulus formed by the steel shaft inside an acrylic tube with Dh = 1.50 in. Maximum shaft rotational speed was 900 rpm and maximum fluid flow rate was 12 gpm. Test fluids included water, glycerin solutions, viscosified clear brines, and several slimhole drilling muds. Models selected from the public domain were used with varying success to calculate results from the hydraulics tests. Simple models typically used by the drilling industry calculated annular pressure loss for non-rotating cases with reasonable accuracy. However, the simple models seldom calculated absolute effects of pipe rotation even though calculated trends correctly match those in measured data. For turbulent flow, annular pressure loss increased with increasing pipe rotation. For laminar flow, annular pressure loss decreased with increasing pipe rotation. In all cases, annular pressure loss increased with increasing mud rheology and decreased with increasing eccentricity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3