Well Trajectory Optimization under Geological Uncertainties Assisted by a New Deep Learning Technique

Author:

Yousefzadeh Reza1ORCID,Ahmadi Mohammad2ORCID

Affiliation:

1. Amirkabir University of Technology (Tehran Polytechnic)

2. Amirkabir University of Technology (Tehran Polytechnic) (Corresponding author)

Abstract

Summary The large number of geological realizations and well trajectory parameters make field development optimization under geological uncertainty a time-consuming task. A novel deep learning-based surrogate model with a novel well trajectory parametrization technique is proposed in this study to optimize the trajectory of wells under geological uncertainty. The proposed model is a deep neural network with ConvLSTM layers to extract the most salient features from highly channelized and layered reservoirs efficiently. ConvLSTM layers are used because they can extract spatiotemporal features simultaneously since layered reservoirs can be regarded as a time series of spatially distributed reservoir properties. The proposed surrogate model could predict the individual objective function with a coefficient of determination of 0.96. After verifying the validity of the surrogate model, four approaches were used to optimize well trajectories. Two of the approaches consumed all available realizations (surrogate model-based and simulation-based approaches), while the remaining two used a subset of realizations. The selection of the subset was based on the cumulative oil production (COP) and the diffusive time of flight (DTOF). Results showed that although the surrogate model used all realizations, it could provide similar results to the simulation-based optimization with only a 5% computational cost of the simulation-based approach. The novelty of this work lies in its proposal of an innovative surrogate model to improve the analysis of channelized and layered reservoirs and its introduction of a novel well trajectory optimization framework that effectively addresses the challenge of optimizing well trajectories in complex three-dimensional spaces, a problem not adequately tackled in previous works.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3