Interactions of Fe(III) and Viscoelastic-Surfactant-Based Acids

Author:

Shu Yi1,Wang Guanqun1,Nasr-El-Din Hisham A.1,Zhou Jian2

Affiliation:

1. Texas A&M University

2. AkzoNobel

Abstract

Summary Viscoelastic-surfactant (VES) -based acid systems have been used successfully in matrix-acidizing and acid-fracturing treatments. However, the existence of Fe(III) as a contaminant in such systems may lead to many problems because of the interactions between VES and Fe(III). Such interactions can reduce the effectiveness of VES-based acid systems and potentially lead to formation damage. In this study, two commercial VES products were used and the interactions between VES and Fe(III) were studied. Rheological properties of these two VES-based acids were examined with various concentrations of Fe(III). Energy-dispersive X-ray spectroscopy was used to identify precipitates from the reaction products. Inductively coupled plasma was applied to measure iron concentrations, and the two-phase titration method was used to determine the VES concentrations in all liquid phases of the samples. The effect of several chelating agents on the reaction of VES with Fe(III) was also examined. Experimental results indicate that the apparent viscosity of live VES-1-based acids [20 wt% hydrochloric acid (HCl) and 4 vol% VES-1] increased from approximately 2 to 126 cp at a shear rate of 100 s−1 at room temperature when the Fe(III) concentration increased from 0 to 1,400  ppm, and it started to decrease at higher Fe(III) concentrations. This is because of the electrostatic interactions between negatively charged [FeCl4]− groups and positively charged amine groups in VES in live acids. Live VES-2-based acids (20 wt% HCl and 4 vol% VES-2) showed properties similar to those of the VES-1-based acids in apparent viscosity. Both surfactants interacted with Fe(III) and precipitates, which are complexes containing iron and VES. These interactions were noted at Fe(III) concentrations greater than 5,000 ppm. On the other hand, the addition of a chelating agent [1:1 mole ratio to Fe(III)] helped to reduce the apparent viscosity of the sample, which means that the chelating agent reacted with Fe(III) and reduced the interactions between VES and Fe(III). At the same time, when the Fe(III) concentration was 6,000 ppm in VES-2-based acid, the disappearance of precipitates with the addition of chelating agents showed a reduction of the Fe(III) impact on such VES-based acid systems. Moreover, the addition of enough chelating agent [more than 1:1 mole ratio to Fe(III) amount] reduced the amount of precipitates that formed significantly when the Fe(III) concentration was very high. Adding a suitable chelating agent can minimize the impact of Fe(III) on VES-based acids.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3