Fully Coupled Thermal-Hydraulic-Mechanical Reservoir Simulation with Non-Isothermal Multiphase Compositional Modeling

Author:

Wang Shihao1,Zhang Juncheng2,Yang Zhenzhou3,Yin Congbin2,Wang Yonghong3,Zhang Ronglei1,Winterfeld Philip1,Wu Yu-Shu1

Affiliation:

1. Colorado School of Mines

2. CNPC Chuanqing Driling Company

3. CNPC USA

Abstract

Abstract We present the development and application of a multi-physical simulator for evaluating the combined thermal-hydraulic-mechanical behaviors of petroleum reservoirs. The simulator combines non-isothermal multiphase compositional modeling with coupled geomechanical simulation module. The simulator consists of two major modules, namely, the fluid and heat flow module and the geomechanical module. An isenthalpic flash calculation approach is implemented in the fluid and heat flow module. In the flash calculation module, a nested approach is adopted, in which PT flash calculations are conducted in the inner loop and temperature is updated in the outer loop. The iteration is continued until both the fugacity and energy stopping criteria are satisfied. An improved version of the Beltrami-Michell equation, called extended Beltrami-Michell equation, has been derived and implemented in the geomechanical simulation module to simulate heterogeneous and plastic behavior of formation rocks. The three normal stress components inside the stress tensor are solved simultaneously with the pressure and enthalpy in the fluid/heat module, ensuring the mass/energy conservation. The newly-derived extension of the Beltrami-Michell equation is capable of handling materials with changing mechanical properties. This way, the simulator is able to capture the phase change as well as the poro-mechanical effects on rock deformation induced by fluid injection/extraction. The multi-physics simulator is built on an object-oriented parallel simulation framework, with a speedup factor up to hundreds.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3