A Novel Approach to Determining Carrying Capacity Index Through Incorporation of Hole Size and Pipe Rotation

Author:

Rathgeber David1,Johnson Erick2,Lucon Peter1,Anderson Ryan2,Todd Burt1,Downey Jerome1,Richards Lee1

Affiliation:

1. Montana Tech

2. Montana State University

Abstract

Abstract Current API RP13D guidelines outline 3 methods for determining hole-cleaning efficiency based on wellbore angle. Method 1, used in low-angle wellbores (<30°) compares cuttings slip velocity with annular velocity to determine a transport ratio and cuttings concentration. Method 2, also used for low-angle wellbores (<30°) derives a carrying capacity index (CCI) based on bulk annular velocity, fluid density and power-law rheology. Method 3, used in high-angle wellbores (<30°) derives a transport index (TI) based on fluid rheology, density, and flow rate. TI is then plotted on an empirically derived chart (Luo et al., 1992, 1994) to determine maximum allowable rate of penetration (ROP) that should ensure efficient hole cleaning. Although these methods are considered recommended practices by API, Method 3 (TI) is based on an outdated study (Luo et al., 1992) with limited scope (one flow loop, one field test). Additionally, this method neglects the importance of drill pipe rotation and pipe eccentricity in cuttings transport efficiency, which has been proven to be a factor in other studies (Akhshik et al., 2015; Sanchez et al., 1997b). This paper highlights the shortcomings of current API standards and identifies what effects contributing factors such as pipe eccentricity and drill pipe rotation rates may have on cuttings transport efficiency. Further, this paper discusses the impact pipe-to-hole area ratio and wellbore flow area have on the effects of drill pipe rotation and flow channeling. Five horizontal wellbores were modeled using Siemens Star CCM+ Computational Fluid Dynamics (CFD) software, with bottom-eccentric 4 ½″ drill pipe placement, in annular diameters of 6¾″, 7 ⅞″, 8 ⅜″ 8 ½″ and 8 ⅝″. Additionally, one bottom-eccentric 5″ drill pipe in an 8 ¾" wellbore was modeled to compare identical pipe-to-hole area ratios with different flow areas. Simulations were run with drill pipe rotation speeds increasing from 0 to 180 RPM, in 30 RPM increments. In order to determine the impact fluid rheology has on flow channel development, both medium density oil-based muds and light density water-based muds were modeled and compared. Bulk annular flow velocity was set to 100 ft/min, to maximize the observable effects of drill pipe rotation. Bulk average velocity was calculated from cross sectional area, determining both annular velocity (velocity parallel to wellbore) and absolute velocity (fluid velocity magnitude regardless of direction). The resultant velocity profiles were used as the annular velocity component in API CCI and TI calculations and compared to bulk annular velocity. In addition to observing fluid velocity for CCI and TI calculations, changes in effective viscosity from the onset of pipe rotation was also analyzed to determine changes in wellbore parameters that may affect cuttings transport.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3