Fracture Conductivity Damage by Water in Shale Formations

Author:

Zhang Junjing1

Affiliation:

1. Texas A&M University

Abstract

Abstract Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objective of hydraulic fracturing in shale is to create fracture networks with sufficient fracture conductivity. Due to the variation in shale mineralogical and mechanical properties, mechanisms of fracture conductivity damage in shale formations are complicated. Standard fracture conductivity measurement procedures were developed for high concentration propped fractures and need to be modified to measure the conductivity of the low concentration proppant packs. Water-based fracturing fluids can interact with the clay minerals in shale and eventually impact shale fracture conductivity. All these challenges require more studies to elevate our understanding of realistic fracture conductivity in shale formations. The aims of this work were to design an experimental framework to measure fracture conductivity created by low concentration proppants and to investigate the mechanisms of conductivity damage by water. We first presented the laboratory procedures and experimental design that can accurately measure fracture conductivity of shale fractures at low concentrations of proppants. Then we measured the undamaged shale fracture conductivity by dry nitrogen. Water with similar flowback water compositions was injected to simulate the damage process followed by the second gas flow to measure the recovered fracture conductivity after the water damage. From this study, we find that laboratory procedures developed in this study can be utilized to reproducibly measure shale fracture conductivity by both gas and liquid. The conductivity measurement of propped fractures by small size proppants at low concentrations requires strict control on gas flow bypassing the fracture both parallel and perpendicular to the fracture length direction. Shale fracture surface softening is identified as the dominant cause for the significant conductivity reduction after water flow.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3