Application of the Marangoni Effect in Nanoemulsion on Improving Waterflooding Technology for Heavy-Oil Reservoirs

Author:

Zhang Danian1,Du Xuan1,Song Xinmin1,Wang Hongzhuang1,Li Xiuluan1,Jiang Youwei1,Wang Mengying1

Affiliation:

1. Research Institute of Petroleum Exploration and Development of PetroChina Company Limited

Abstract

Summary Waterflooding is considered an important cold-production method because it is economically advantageous for heavy-oil-reservoir development; however, its efficiency is not remarkable because of the adverse oil/water-mobility ratio and cold damage from solid-state adsorption. To address this problem, oil/water emulsion is critical for improving the recovery by significantly altering oil mobility. Previous research is mainly focused on the effect of surfactants, salinity, and water/oil ratio on emulsion formation, rather than on the effect of kinetic energy under low or no shear stress on emulsification. In this study, experiments are conducted using a microscope to observe oil/water interfacial turbulence (Marangoni effect) when oil is dropped into a nanoemulsion. The purpose of this study is to form an emulsion using the interfacial turbulence under low or no shear stress, to improve heavy-oil recovery under waterflooding. The interfacial movement between a nanoemulsion and oil and the mechanism of formation of the emulsion are investigated. The Marangoni effect and mass transfer are observed by use of a microscope and low field nuclear magnetic resonance (NMR), respectively. Nanoemulsion, along with other methods of chemical enhanced oil recovery (EOR), is compared by conducting coreflooding and sandpack-flooding experiments after waterflooding. The results show that the Marangoni effect can help to emulsify and remove the oil from oil sand by converting interfacial energy into kinetic energy. On the basis of flooding-experiment results, we conclude that slug injection with a combination of nanoemulsion flooding and polymer flooding is an effective method for improving heavy-oil recovery.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3