Surfactant in Fracturing Fluid: Enhancing Imbibition Oil Recovery or Blocking Pore Throats?

Author:

Yousefi Mohammad1,Habibi Ali1,Dehghanpour Hassan1

Affiliation:

1. University of Alberta

Abstract

Abstract Low recovery of fracturing water is partly due to fracturing fluid leak-off into formation and water trapping in matrix. In our previous studies (Soleiman Asl et al. 2019 and Yuan et al. 2019), we showed that using surfactant solutions in fracturing fluid can significantly enhance imbibition oil recovery. However, there is one critical question remained unanswered: What are the consequences of these additives on well performance during flowback and post-flowback processes? Can they block the pore-throats of rock matrix and induce formation damage? To answer this question, we develop and apply a comprehensive laboratory protocol on a tight core plug to simulate leak-off and flowback processes under reservoir pressure, with and without initial water saturation (Swi). We evaluate the possibility of pore-throat blockage by comparing pore-throat size distribution of the core plug and size distribution of the particles formed in a microemulsion (ME) solution. We also investigate the effects of Swi on effective oil permeability (koeff) after the flowback process. The results of leak-off and flowback tests using tap water as the base case shows that koeff after flowback is lower than that before the leak-off, mainly due to phase trapping. However, results of the tests using the ME solution show that koeff after flowback is greater than koeff before leak-off. This observation suggests that the leak-off of ME solution enhances regained oil relative permeability during flowback by reducing phase trapping and water blockage. When Swi = 0, the blockage of leaked-off fluid reduces koeff during the flowback process. The mean size of self-assembled structures (referred to as "particles" here) formed by mixing the ME solution with water is around 10-20 nm. The MICP profile of the core sample shows that around 95% of pore throats are bigger than the size of formed particles, suggesting low chance of pore-throat blockage by the suspended particles.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3