Phase Field Simulation of Immiscible CO2 Flooding EOR Mechanisms in Porous Media

Author:

Fu Hongtao1,Dang Sisi2,Yang Kena3,Zhao Yu4,Guo Chunping5,Fu Hong1,Guo Hu1,Song Kaoping1

Affiliation:

1. Unconventional Petroleum Research Institute, China University of Petroleum, Beijing

2. Luliang Oilfield Operation Area of Xinjiang Oilfield

3. School of Petroleum Engineering, Northeast Petroleum University

4. Exploration and Development Research Institute of Daqing Oilfield Co Ltd

5. School of Petroleum Engineering, China University of Petroleum, Beijing

Abstract

AbstractCO2 flooding technology for EOR not only meet the needs of oilfield development, but also solve the problem of carbon emission, which has become a global research hotspot. CO2 flooding includes miscible and immiscible flooding. The advantage of immiscible CO2 flooding is the ability to achieve high recovery in different reservoirs or fluid conditions compared with miscible flooding. But there are no reports about quantitative analysis of immiscible CO2 flooding at the micro level due to the expense and complexity of the experiments.In this paper, the process of immiscible CO2 flooding was simulated based on the Navier-Stokes equation in porous media by COMSOL Multiphysics. An ideal homogeneous rock structure model was established to study the influence of interfacial tension, injection velocity, injection viscosity and gravity on immiscible CO2 flooding. The porosity of the model is 34.7% and the permeability is 36.9mD. The simulation of pressure is 10 MPa and the temperature is 80 ℃.It was found that with the injection of CO2, the contact interface of two phases gradually changes from near-piston flow to non-piston flow under immiscible condition. Decreasing the interfacial tension and increasing the injection velocity significantly change the flow paths of CO2 and increase the sweep area of CO2. The difference between CO2 and oil viscosity is one of the factors influencing the occurrence of fingering. Increasing the viscosity of CO2 injection effectively suppress viscous fingering and improve the sweep effect. Gravity is one of the factors affecting the effect of immiscible CO2 flooding.Phase field simulation was used to study immiscible CO2 flooding for the first time. It was found that increasing the viscosity of CO2 injection could significantly enhance recovery. In order to increase the viscosity of CO2, a thickener can be added to the supercritical CO2. This study provides micro-level theoretical support for the development of process parameters in oilfield, and further provides new ideas for CO2 EOR.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3