A Semianalytic Solution for Flow in Finite-Conductivity Vertical Fractures by Use of Fractal Theory

Author:

Cossio M..1,Moridis G.J.. J.2,Blasingame T.A.. A.1

Affiliation:

1. Texas A&M University

2. Lawrence Berkeley National Laboratory

Abstract

Summary The exploitation of unconventional reservoirs complements the practice of hydraulic fracturing, and with an ever-increasing demand in energy, this practice is set to experience significant growth in the coming years. Sophisticated analytic models are needed to accurately describe fluid flow in a hydraulic fracture, and the problem has been approached from different directions in the past 3 decades—starting with the work of Gringarten et al. (1974) for an infinite-conductivity case, followed by contributions from Cinco-Ley et al. (1978), Lee and Brockenbrough (1986), Ozkan and Raghavan (1991), and Blasingame and Poe (1993) for a finite-conductivity case. This topic remains an active area of research and, for the more-complicated physical scenarios such as multiple transverse fractures in ultratight reservoirs, answers are currently being sought. Starting with the seminal work of Chang and Yortsos (1990), fractal theory has been successfully applied to pressure-transient testing, although with an emphasis on the effects of natural fractures in pressure/rate behavior. In this paper, we begin by performing a rigorous analytical and numerical study of the fractal diffusivity equation (FDE), and we show that it is more fundamental than the classic linear and radial diffusivity equations. Thus, we combine the FDE with the trilinear flow model (Lee and Brockenbrough 1986), culminating in a new semianalytic solution for flow in a finite-conductivity vertical fracture that we name the “fractal-fracture solution (FFS).” This new solution is instantaneous and comparable in accuracy with the Blasingame and Poe solution (1993). In addition, this is the first time that fractal theory is used in fluid flow in a porous medium to address a problem not related to reservoir heterogeneity. Ultimately, this project is a demonstration of the untapped potential of fractal theory; our approach is flexible, and we believe that the same methodology could be extended to different applications. One objective of this work is to develop a fast and accurate semianalytical solution for flow in a single vertical fracture that fully penetrates a homogeneous infinite-acting reservoir. This would be the first time that fractal theory is used to study a problem that is not related to naturally fractured reservoirs or reservoir heterogeneity. In addition, as part of the development process, we revisit the fundamentals of fractals in reservoir engineering and show that the underlying FDE possesses some interesting qualities that have not yet been comprehensively addressed in the literature.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3