Eagle Ford Huff ‘n’ Puff Gas-Injection Pilot: Comparison of Reservoir-Simulation, Material Balance, and Real Performance of the Pilot Well

Author:

Orozco Daniel1,Fragoso Alfonso1,Selvan Karthik2,Noble Graham3,Aguilera Roberto1

Affiliation:

1. University of Calgary

2. Nexen Energy

3. CNOOC International

Abstract

Summary In this study we compare real data from an Eagle Ford Shale huff ‘n’ puff (H&P) gas-injection pilot with reservoir simulation and tank material-balance calculations. The comparison is good and supports the conclusion that oil recovery from the Eagle Ford (and likely other shales) can be increased significantly using H&P. For H&P to work, the injected gas and the in-situ oil in the shale must be contained vertically and laterally following hydraulic fracturing. Containment is critical for the success of H&P. Containment implies that the injected gas flows into the hydraulic fractures, penetrates the tight matrix, and does not escape or leak outside the target stimulated reservoir volume (SRV). Vertical and lateral containment exists in the Eagle Ford as demonstrated previously (Ramirez and Aguilera 2016) with an upside-down distribution of fluids: Natural gas is at the bottom of the structure, condensate in the middle, and oil at the top. Two different matching and forecasting approaches are used in this study: reservoir simulation and tank-material-balance calculations. The results show a good history match of primary recovery and secondary recovery by H&P in the pilot well. The history match is good in the case of both reservoir simulation and tank material-balance calculations. Once a match is obtained, the simulation and material balance are used to forecast secondary recovery over a period of 10 years with sustained H&P injection of dry gas. The results indicate that dry-gas H&P can increase oil recovery from the Eagle Ford Shale significantly. Under favorable conditions, oil recovery can be doubled and even tripled over time compared with the primary recovery. The addition of heavier ends to the H&P gas injection can increase oil recovery even more, putting it on par with recoveries in conventional reservoirs. The benefit of H&P occurs in the case of both immiscible and miscible gas injection. The H&P benefits can likely be also obtained in other shale reservoirs with upside-down containment of dry gas, condensate, and oil. The novelty of this work is the combined use of reservoir simulation and tank material-balance calculations to match the performance of an H&P gas-injection pilot in the Eagle Ford Shale of Texas. We conclude that oil recoveries can be increased significantly by H&P.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3