Understanding Thermo-Poroelastic Mechanical Stress Induced Damages in Network of Pre-Existing Fractures During Drilling Operation

Author:

Gomar Mostafa1,Elahifar Behzad1

Affiliation:

1. Norwegian University of Science and Technology

Abstract

Abstract In drilling the reservoir sections of a well, one of the most challenging issues is reducing damage to the reservoir by controlling downhole pressure. Many drilling techniques such as underbalanced drilling (UBD) and managed pressure drilling (MPD) are employed to minimize the risks associated with drilling as well as to minimize damage to the porous rock. Even though chemical and physical damages may be short-term and could be repaired by some stimulation techniques, the long-term effects of mechanical damages in porous and fractured reservoirs have received insufficient attention. Accordingly, not only could the above drilling techniques be applied to solve downhole drilling problems, but they also may be used to reduce induced mechanical damages in fractured rocks. This article presents a new method for modeling changes in fracture permeability caused by drilling in fractured rocks. As part of the approach, the finite element method (FEM) is employed to conduct a thermo-poroelastic analysis of stress distributions around the borehole and the displacement discontinuity method (DDM) is used to model fracture deformations. Based on different fracture spacings and fracture inclination angles, we have considered models of regular fracture networks in the present study. This study focuses on the differences in permeability in underbalanced and overbalanced drilling operations that are compared together in different models. Effective stress differences (over 40 MPa) were found along and around borehole periphery. Shear stresses in the oblique fracture network also governed aperture change. Short-term mechanical stresses and long-term thermal and fluid pressures determine the fracture aperture. In the long run, fluid pressure and thermal stresses contribute to long term permeability change of fractures while mechanical stresses cause a short-term change. Underbalanced drilling was simulated to reduce fracture permeability, while cooling and pressurizing of rock encouraged fracture permeability without considering solid particle plugging. Fracture aperture adopts a seesaw pattern in a small-spaced fracture network. When the fracture aperture increases in a fracture, the neighboring fractures experience decreased apertures. Despite the drilling method, fractures intersecting boreholes have reduced permeability after drilling for a long time, as they choked in a few locations along the fracture length. At present, the industry considers managed pressure and underbalanced drilling to be the priority for resolving drilling problems. This paper investigates stress-induced damages in fractured rocks under overbalanced and underbalanced drilling conditions. It is also of significant interest in geothermal reservoirs, where the temperature difference between the rock and the well bore fluid is large. Furthermore, such an analysis would provide the optimal well location from a geomechanical and reservoir engineering standpoint.

Publisher

SPE

Reference47 articles.

1. Pressurization of a fractured wellbore;Atkinson;Int J Fracture,1997

2. Analysis of stress-dependent permeability in non-orthogonal flow and deformation fields;Bai;Rock Mech Rock Eng,1999

3. Numerical modeling of stress-dependent permeability;Bai;Int J Rock Mech Min Sci,1997

4. Fluid flow and heat flow in deformable fractured porous media;Bai;Int J Eng Sci,1994

5. Fundamentals of rock joint deformation;Bandis;Int J Rock Mechan Min Sci Geomechan Abstracts,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3