Scale-Prediction/Inhibition Design Using Machine-Learning Techniques and Probabilistic Approach

Author:

Al-Hajri Nasser M.1,Al-Ghamdi Abdullah1,Tariq Zeeshan2,Mahmoud Mohamed2

Affiliation:

1. Saudi Aramco

2. King Fahd University of Petroleum & Minerals

Abstract

Summary This paper presents a data-driven methodology to predict calcium carbonate (CaCO3)-scale formation and design its inhibition program in petroleum wells. The proposed methodology integrates and adds to the existing principles of production surveillance, chemistry, machine learning (ML), and probability theory in a comprehensive decision workflow to achieve its purpose. The proposed model was applied on a large and representative field sample to verify its results. The method starts by collecting data such as ionic composition, pH, sample-collection/inspection dates, and scale-formation event. Then, collected data are classified or grouped according to production conditions. Calculation of chemical-scale indices is then made using techniques such as water-saturation level, Langelier saturation index (LSI), Ryznar saturation index (RSI), and Puckorius scaling index (PSI). The ML part of the method starts by dividing the data into training and test sets (80 and 20%, respectively). Classification models such as support-vector machine (SVM), K-nearest neighbors (KNN), gradient boosting, gradient-boosting classifier, and decision-tree classifier are all applied on collected data. Prediction results are then classified into a confusion matrix to be used as inputs for the probabilistic inhibition-design model. Finally, a functional-network (FN) tool is used to predict the formation of scale. The scale-inhibition program design uses a probabilistic model that quantifies the uncertainty associated with each ML method. The scale-prediction capability compared with actual inspection is presented into probability equations that are used in the cost model. The expected financial impact associated with applying any of the ML methods is obtained from defining costs for scale removal and scale inhibition. These costs are factored into the probability equations in a manner that presents incurred costs and saved or avoided expenses expected from field application of any given ML model. The forecasted cost model is built on a base-case method (i.e., current situation) to be used as a benchmark and foundation for the new scale-inhibition program. As will be presented in the paper, the results of applying the preceding techniques resulted in a scale-prediction accuracy of 95% and realized threefold cost-savings figures compared with existing programs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3