The Mechanics of Fracture Induction and Extension

Author:

Harrison Eugene1,Kieschnick W.F.1,McGuire W.J.1

Affiliation:

1. The Atlantic Refining Co.

Abstract

Published in Petroleum Transactions, AIME, Volume 201, 1954, pages 252–263. Abstract This paper concerns the induction and extension of fractures into rock formations as involved in drilling, completing, and production stimulating operations on wells. Conclusions concerning formation breakdown are derived froma review and extension of published analyses relating to mechanical theories of rock stress and the state of stress in the earth's crust anda correlation of field data from fracturing operations. Conclusions concerning the mechanics of fracture extension, which indicate the relationship between fracture dimensions and rock properties, depth, and volume of injected fluid, are tentative and largely establish limits of relationships. These conclusions are derived from stress calculations, limited field data, and laboratory experimental studies. The experimental work involves the study of the stresses at the fracture boundaries and the geometry of pressurized fractures by means of photo-elastic modeling methods. Results of this investigation indicate that a large majority of pressure induced well bore fractures are vertical, particularly in deeper wells; and variations in the pressures necessary to create and extend fractures can be explained largely on a basis of established rock properties. It is also shown that variations due to tectonic forces should usually be expected to be slight. Other results indicate that during that extension of fractures rather large fracture volumes are temporarily created by the parting of the formation. Introduction The purpose of this paper is to present the results of calculations and laboratory experiments concerning the mechanics of fracture induction and extension with a view to broadening existing knowledge relating to these phenomena. It is believed that continued progress in developing knowledge of this type is important to the further development of techniques for drilling and completing wells.

Publisher

Society of Petroleum Engineers (SPE)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3