ESP Technology Maturation: Subsea Boosting System With High GOR and Viscous Fluids

Author:

Barrios L..1,Scott S..1,Rivera R..2,Sheth K..3

Affiliation:

1. Shell E&P

2. Kinetic Pump Innovations

3. Baker Hughes

Abstract

Abstract This paper provides insight into the Caisson ESP Technology Maturation for subsea boosting systems with high GOR and viscous fluids. It will focus on the developmental research on the effects of viscosity and two phase (liquid & gas) fluids on electric submersible pumps (ESPs), which are multistage centrifugal pumps for deep boreholes. The Electrical Submersible Pump (ESP) system is an important artificial lift method commonly used for subsea boosting systems. Multiphase flow and viscous fluids cause problems in pump applications. Free gas inside an ESP causes many operational problems such as loss of pump performance or gas lock conditions (Barrios 2010 [6]). The objective of this study is to predict the operational conditions that cause degradation and gas lock. This paper provides a summary on the Technology maturation for a high scale ESP Multi-Vane Pump (MVP) for high GOR fields to in support of Shell's BC-10 developments. These novel projects continue the long tradition of Shell's leadership in the challenging deepwater environment. This paper will describe the capability and effects of viscosity and two phase (liquid & gas) fluids using a MVP 875 series G470 as a charged pump in a standard ESP system 1025 series tandem WJE 1000 mixed-type pump. Extensive testing and qualification of the subsea boosting system was undertaken prior to field considerations. Testing was conducted at the world's only 1500-hp ESP test facility capable of controlling multi-phase fluid viscosities and temperatures. A comprehensive suite of tests was performed in conjunction with Baker Hughes Centrilift replicating the expected conditions and performance requirements for Shell's deepwater assets. This paper describes the subsea boosting system maturity process, and reports the effects of viscosity and two phase liquid - gas fluids on ESPs. The test facility work was performed using pumps with ten or more stages moving fluids with viscosity from 2 to 400 cP at various speed, intake pressure, and gas void fractions (GVF, aka gas volume fractions). The testing at Shell's Gasmer facility revealed that the MVP-ESP system is robust and performance tracked theoretical predictions over a wide range of two-phase flow rates and light-viscosity oils

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3