Combined Video and Ultrasonic Measurements for Fracture Diagnostics – Greater than the Sum of the Parts

Author:

Tymons Tobben1,Roberts Glyn1,Troup Duncan2

Affiliation:

1. EV

2. Archer

Abstract

AbstractDownhole imaging technology has been widely utilized in recent years to help diagnose proppant distribution during hydraulic fracturing operations. Abrasion leading to entry hole enlargement provides strong evidence of proppant placement into individual perforations, and treatment volume can be inferred by measuring the magnitude of this erosion. Results from individual perforations are easily aggregated to cluster and stage level to provide information on overall treatment distribution.Two different technologies have been deployed for this purpose – an array of downhole video cameras able to capture a full 360˚ view of the borehole and, more recently, multi-transducer ultrasonic instruments. These services have been considered competitors, and arguments for and against both technologies have included their relative measurement resolutions and how this impacts result accuracy, along with sensitivity to 'stick and slip' effects on toolstring motion. Both technologies are also affected to differing degrees by the well fluid and the presence of diverters and proppant in perforations. The recent introduction of a toolstring able to simultaneously acquire images from both sensor types affords the opportunity to objectively compare results acquired under identical conditions and establish their merits and limitations.The paper considers the underlying physical principles of each of the measurements and reviews in detail the real world results from North American wells that have been logged using both technologies.The aim of the paper is to provide a more complete understanding of the technologies involved, and how they can be viewed as complementary rather than competitive when they are run simultaneously, allowing potential users to make fully informed decisions on when, why and how to deploy them. We will also demonstrate how the information derived from simultaneous application is of greater value than that derived from the individual technologies in isolation, and how this can be applied to further enhance completion design and frac execution for unconventional wells.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3