A Review of Engineering and Safety Considerations for Hybrid-Power (Lithium-Ion) Systems in Offshore Applications

Author:

Hill Davion M.1,Agarwal Arun2,Gully Benjamin2

Affiliation:

1. DNV USA Inc

2. DNV GL

Abstract

Summary From prior experience in the automotive sector, and now the maritime sector, hybridization of power systems is known to increase energy efficiency and reduce emissions, with lower fuel consumption. With impending emissions-control areas in the US continental shelf, and nitrogen oxide enforcement mechanisms in the North Sea, emissions reduction in oil and gas exploration-and-production operations is increasingly relevant. Hybrid-power systems can address some of these issues with batteries to offset peak loads, thereby reducing size requirements for the total system. The challenge that the oil and gas industry faces is to decide when and where hybrid-power systems provide the most value for operations, how they should be implemented, what technologies are acceptable, what safety considerations there may be, and how these technologies can improve the bottom line. There is a wealth of information on lithium-ion batteries, though it is not all consistent--cost data are unclear, lifetime and energy density considerations vary under different conditions, and ruggedness and application to harsh environments constitute a large uncertainty. A review of these technologies is provided to serve as a selection guide.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3