Method for Drawdown Analysis of a Multi-Stage Hydraulically Fractured Horizontal Well That Penetrates an Unconventional Naturally Fractured Reservoir

Author:

Gutierrez Oseguera Alejandra1,Aguilera Roberto1

Affiliation:

1. Schulich School of Engineering, University of Calgary

Abstract

AbstractThis paper examines the pressure response of a horizontal well that penetrates an unconventional, naturally fractured reservoir. The response is quite surprising. The expectation of linear flow is shattered, and only radial flow is observed. The radial flow two parallel straight lines in a semilogarithmic crossplot of flow pressure vs. time are present but they are reversed, with the last straight line showing smaller pressures as compared with the extrapolated first straight line.Two different methods are used; the first one is a conventional approach for analyzing the first semilog straight line with a view to calculating flow capacity and permeability well as skin. The second approach involves a novel dual porosity model that permits calculating several fracture parameters of interest, and to the best of our knowledge has not been published previously in the petroleum engineering literature. In this paper, new equations with a semi-empirical component, are presented that allow matching the reversed real pressure drawdown data as well as the corresponding pressure derivatives.The new model shows that fluid flow is dominated initially by the fractures as in the case of dual porosity conventional models. In the conventional model, flow pressure data deviate from the first straight line toward the right due to pressure support stemming from fluids that move from the matrix toward the fractures. Eventually, a pressure equilibrium is reached and a second straight line, parallel to the first one, is developed. However, in the case of the model presented in this paper the data deviates, not to the right of the first straight line, but down and below the first straight line. This pressure drop is interpreted to be the result of boundary-dominated flow. Next, a pressure equilibrium is reached between matrix and fractures, and the last line becomes parallel to the first straight line. It is shown that correct pressure and derivative matches permit estimating various parameter of interest such as size of the matrix blocks, number of fractures that intercept the well bore, storativity ratio omega, partitioning coefficient (the ratio between fracture and matrix porosity), matrix permeability, and the ratio of fracture to matrix hydraulic diffusivity.The novelty of this study is the development of a new easy-to-use well testing model for matching an unconventional pressure response during drawdown of a horizontal well that penetrates an unconventional tight dual porosity reservoir. The new method is explained with a step-by-step example that uses real data from the giant unconventional Chicontepec paleochannel in Mexico and can be reproduced readily by the reader.

Publisher

SPE

Reference17 articles.

1. Reservoir Engineering Handbook;Ahmed,2006

2. Well Test Analysis of Naturally Fractured Reservoirs;Aguilera;SPE Form Eval,1987

3. Flow Units: From Conventional to Tight-Gas to Shale-Gas to Tight-Oil to Shale-Oil Reservoirs;Aguilera;SPE Res Eval & Eng,2014

4. Fundamental Equations of Filtration of Homogeneous Liquids in Fissured Rocks;Barenblatt;Soviet Physics,1960

5. Pressure Drawdown and Buildup in the Presence of Radial Discontinuities;Bixel;SPE J.,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3