Multiscale Fluid-Phase-Behavior Simulation in Shale Reservoirs Using a Pore-Size-Dependent Equation of State

Author:

Luo Sheng1,Lutkenhaus Jodie L.1,Nasrabadi Hadi1

Affiliation:

1. Texas A&M University

Abstract

Summary The phase behavior of reservoir fluids plays a fundamental role in predicting well performance and ultimate recovery. The uncertainty in phase behavior is currently one of the greatest challenges in developing unconventional shale resources. The complex phase behavior is attributed to the broad range of pore sizes in shale. In macroscale geometries such as fractures and macropores, the fluid behavior is bulk-like; in nanoscale pores, the fluid behavior is significantly altered by confinement effects. The overall phase behavior of fluids in porous media of mixed pore sizes is yet to be understood. In this paper, we present a study on the effect of pore-size distribution on the phase behavior of shale-reservoir fluids in a multiscale-pore system. The global fluid-phase equilibria among different sizes of pores are simulated. A pore-size-dependent equation of state (EOS) is used to describe the fluid by the confining pore diameter. The EOS confinement parameters for fluid/pore-wall surface interaction are determined by experimental results from differential-scanning calorimetry (DSC) and isothermal adsorption of species C1–14. The multiscale phase equilibria are simulated by directly minimizing the total Helmholtz free energy. A modified Eagle Ford oil is used for the case study. Constant-composition expansions (CCEs) of dual-scale (bulk and 15 nm) and triple-scale (bulk, 15 nm, and 5 nm) systems are simulated. The first bubble emerges from the bulk region at a lightly suppressed “apparent” bubblepoint pressure. Below the bubblepoint, the liquid saturation in the bulk region drops sharply, but the fluids in the nanopores are undersaturated throughout the multistage expansions. In the end, large amounts of intermediate-to-heavy hydrocarbons are retained in nanopores, implying a significant oil-recovery loss in shale. The confinement effect also leads to near-critical phase behavior in small-scale nanopores (<5 nm).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3