Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically Fractured Wells: Field-Case Studies and Numerical Simulations

Author:

Sun Jianlei1,Schechter David1

Affiliation:

1. Texas A&M University

Abstract

Summary Unconventional reservoirs require extensive hydraulic-fracturing treatments to produce fluids economically and efficiently. The main purpose of such treatments is to create complex fracture networks with high-conductivity paths deeper into the nonstimulated reservoir regions. Proppants play an important role in maintaining good-quality fracture conductivities, which then greatly affect long-term production performance. In addition, research on proppants has shown a reduction in conductivities under downhole stresses and multiphase-flow behaviours. Therefore, it is important to study the effect different proppants and conductivities have on production performance through actual field cases. To evaluate the production performance of wells completed with different proppants, the authors proposed an integrated work flow for characterization and simulation of unconventional reservoirs. This work flow is unique because of the stochastic fracture-network-generation algorithms and improved unstructured-grid-generation techniques. Both analysis of field-production data and numerical simulations were performed on eight wells in the CAPA field of North Dakota. For the field-data analysis, three public-data resources were reviewed to prepare a summary of reservoir properties, fracture properties, proppant properties, and production history. For the numerical simulations, all the wells were modelled and simulated with the proposed work flow. Finally, sensitivity analyses were carried out to investigate the effects of fracture conductivities and natural fractures. After completing the field-case studies and reservoir simulations, it was concluded that with the same fracture design, higher fracture conductivity improves production performance. Pumping a smaller volume of upgraded proppants with higher conductivity not only improves long-term production performance, but also justifies the additional costs and reduces the overall operation time of the entire hydraulic-fracturing job. The stimulated reservoir volume was greatly increased, as was the production performance, where natural fractures exist. In this paper, field-data analysis was applied in the Bakken to demonstrate the integrated unconventional work flow. The proposed unstructured-gridding algorithms can be incorporated into any preprocessor to handle complex networks. Reservoir, fracture, and proppant characterization and reservoir simulation of the field cases can help engineers prepare and interpret simulation input and output.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3