Affiliation:
1. China University of Petroleum, East China, and the University of Texas at Austin
2. University of Texas at Austin
3. China University of Petroleum, East China
Abstract
Summary
Matrix acidizing is a common technique for carbonate reservoir stimulation. In this work, a new two-scale continuum model is developed to study the 2D acidizing process. The Navier-Stokes-Darcy equation is used instead of the Darcy’s-law equation to describe fluid flow. The continuity equation is also modified to consider the mass-exchange term between fluid and solid phases. The comparison results show that neglecting the solid-matrix-dissolution source term results in overestimation of pore volume (PV) to breakthrough (PVBT). The Darcy’s-law equation does not well-capture physical behaviors of fluid phase with low acid-injection velocity compared with the Navier-Stokes-Darcy equation. On the basis of this model, we discuss different processes influencing matrix acidizing, including convection, diffusion, and reaction, and different models, including classical and new two-scale continuum models. Besides, a comprehensive parametric study is also conducted to study the effect of parameters with respect to acid and rock physical parameters on the matrix-acidizing process. The typical dissolution patterns and optimal acid-injection rate presented in experimental studies can be well-observed by the new two-scale continuum model. Increasing the acid-injection concentration has a limited effect on the amount of acid mass but substantially reduces the amount of solute required. The acidizing curve is very sensitive to the dispersity coefficient, acid-surface-reaction rate, and porosity/permeability relationship.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献