A Cost-Effective Water Management Strategy for Developing Large Heavy Oil Field in Northern Kuwait

Author:

Al-Ballam Shaikha1,Pandey Dharmesh1,Pallath George2,Kuijvenhoven Cornelis2

Affiliation:

1. Kuwait Oil Company

2. Shell Kuwait Exploration & Production B.V.

Abstract

Abstract A cost-effective water management strategy for the thermal development should ensure the availability of right quality and quantity of water during the lifetime of the field. This paper presents an actual case for field water management, which includes availability, use, re-use and safe disposal of both source and effluent water. Thermal projects are notorious for their large volume of produced water through the life of the field. While treatment of produced water is a major issue; in a country like Kuwait where water is scarce, part of the produced water need to be recycled and re-used for steam generation. The methods and procedure followed are based on the practices used in the current Large Scale Thermal Pilots (LSTPs). The process involves field observations and performance, facility set-up and limitations, technical analysis and mitigation plan; so as to reach to an efficient water management plan and deliver better quality water. Heavy oil field development in Northern Kuwait is currently one of the few thermal "mega-projects" in the world. The development started initially with Cyclic Steam Stimulation (CSS), followed by Steam Flood (SF). These projects need dedicated used water disposal wells. Water disposal wells, initially completed, showed poor injectivity even after CTU acid stimulation with 15% HCl. Based on lab test results and analysis, injectivity was restored with suitable anti-scalant injection and precipitate removal. Another aspect of these wells was the injection casing shoe-setting depth. A multi-disciplinary team reviewed and established the optimum placement interval for shoe that meets the regulatory and design criteria. The new shoe setting-depth eliminated repeated well interventions during the life of these wells. The learnings were disseminated to various other projects within the company. Quality of source water was also a focus area for the team. Water quality of the source water at various depths were analyzed and tested. Based on the results, optimum well depth and location was ascertained which resulted in improved water quality and quantity. A novel approach, with key focus on competitive scoping and sustainable development and the combined effort from various stakeholders through an integrated approach have enabled significant savings to reduce the cost of this project. The learnings gathered, and the uniqueness of the project will add significant value to similar projects elsewhere in the world.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3