Estimating the Coefficient of Inertial Resistance in Fluid Flow Through Porous Media

Author:

Geertsma J.1

Affiliation:

1. Koninklijke/Shell Exploratie en Produktie Laboratorium

Abstract

Abstract The object of this paper is to introduce an empirical, time-honored relationship between inertia coefficient - frequently misnamed "turbulence factor" - permeability, and porosity, based on a combination of experimental data, dimensional analysis, and other physical considerations. The formula can be used effectively for, among other things, the preliminary evaluation of the number of wells in a new gas field and the spacing between them. Introduction It has long been recognized that Darcy's law for single-phase fluid flow through porous media,Equation 1 in which ?=superficial velocity µ=fluid viscosity k=formation permeability p=pressure head, is approximately correct only in a specific flow regime where the velocity ? is low. Single-phase fluid flow in reservoir rocks is often characterized by conditions in favor of this linearized flow law, but important exceptions do occur. They are in particular related to the surroundings of wells producing at high flow rates such as gas wells. For the prediction or analysis of the production behavior of such wells it is necessary to apply a more general nonlinear flow law. The appropriate formula was given in 1901 by Forchheimer1; it readsEquation 2 in which ?=density a=coefficient of viscous flow resistance 1/k ß=coefficient of inertial flow resistance. This equation indicates that in single-phase fluid flow through a porous medium two forces counteract the external force simultaneously - namely, viscous and inertial forces - the latter continuously gaining importance as the velocity ? increases. For low flow rates the viscous term dominates, whereas for high flow rates the inertia term does. The upper limit of practical applicability of Darcy's law can best be specified by some "critical value" orf the dimensionless ratio.Equation 3 which has a close resemblance to the Reynolds number. Observe that ß/a has the dimension of a length. Inertia and Turbulence As the Reynolds number is commonly used as an indicator for either laminar or turbulent flow conditions, the coefficient ß is often referred to as the turbulence coefficient. However, the phenomenon we are interested in has nothing to do with turbulence. The flow regime of concern is usually fully laminar. The observed departure from Darcy's law is the result of convective accelerations and decelerations of the fluid particles on their way through the pore space. Within the flow range normally experienced in oil and gas reservoirs, including the well's surroundings, energy losses caused by actual turbulence can be safely ignored.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3