Affiliation:
1. Delft University of Technology
Abstract
Summary
Gravity override is a severe problem in gas-injection enhanced-oil-recovery (EOR) processes, especially in relatively homogeneous formations. Foam can reduce gravity override. Shan and Rossen (2004) show that the best foam process for overcoming gravity override is one of injecting a large slug of surfactant followed by a large slug of gas, injected at constant, maximum-allowable injection pressure. This process works because foam collapses near the injection well, giving good injectivity simultaneously with mobility control at the leading edge of the gas bank. The supply of gas that would be needed to maintain constant injection pressure is a concern for EOR processes in which gas is produced industrially or from a separations plant with limited capacity: The available gas stream may not be sufficient for the optimal process.
We show that for such a process, the pressure drop across the foam bank back to the injection well, at fixed injection rate, is nearly constant as the foam bank propagates radially outward. From this result, one can derive a simple formula to predict the rate of gas injection required for each of two limiting cases:
An extremely strong foam at the foam front, many times more viscous than the fluids it displaces. In this case, the rate of gas injection required to maintain constant injection pressure is nearly constant, but injection rate is low. A foam just strong enough to maintain mobility control at its leading edge. In this case, injection rate required to maintain constant injection pressure increases steeply with time.
Use of the formulae provides a quick initial estimate of how gas-injection rate must vary over the duration of the EOR process to maintain an optimal process. The fit to simulations of surfactant-alternating-gas (SAG) foam-injection rate in a five-spot pattern is remarkably good, especially for strong foam, given the simplicity of the model. In addition, we illustrate how one would determine the properties of a foam that would fit the available gas stream. This criterion then could guide the development of a surfactant formulation with these properties.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献