Sleeve Activation Sleeve Activation in Open-hole Fracturing Systems: A Ball Selection Study

Author:

Baihly Jason1,Aviles Isaac1,Johnson Joshua1,Melenyzer George1

Affiliation:

1. Schlumberger

Abstract

Abstract During the past decade, the completion technique used in liquid-rich unconventional plays in North America has undergone a transformation. Today, the vast majority of completions in these areas are open-hole (OH) graduated ball-drop fracturing isolation systems. This preferred completion type for horizontal wells is driven by the efficiency gains in fracturing operations and the production gains when compared to previously used completion techniques. Thousands of open-hole fracturing systems are run each year, with a continuously growing stage count. Graduated ball-drop type completions rely on a sliding sleeve activated by a ball dropped from surface. Each ball travels the length of the lateral well to its intended operational depth, at which it meets a mated seat and isolates the wellbore below. Once the ball is in position, the sliding sleeve opens via the hydraulic force on the ball and seat, allowing a fracturing stage to commence. This dual function of the ball—activation and sealing—is of extreme importance for the stimulation treatment process. If the ball fails, it will result in bypassed pay zones and unintentional refracturing of previously stimulated zones. Although sometimes surface pressures can be used to infer ball behavior, often the pressure signals observed at surface cannot guarantee successful ball performance. This paper will present an extensive study of ball performance under pressure for the most common ball materials in the industry. Phenolic, composite and metal alloy materials were explored with the pros and cons for each investigated. In particular three main areas were analyzed: 1) molding, layering and extrusion of material versus inconsistencies in ball performance; 2) ball deformation at high pressure versus pressure required to bring the ball off seat; and 3) comparison of the performance of phenolic, composite and metal alloy materials for ball fabrication and their performance at high temperature. The conclusions from this paper provide operators the necessary information to consider when making completion and ball material decisions in their field operations. In particular, the results of this testing may illuminate some previously unexplainable occurrences in graduated ball sliding-sleeve systems. This testing clarified that not all fracturing balls pumped in horizontal wells perform equivalently under wellbore fracture conditions.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3