SAGD Circulation Phase: History-Match of Field Data in Lloydminster Reservoir using a Discretized Thermal Wellbore Modelling Simulator

Author:

Ayala Daniel1,Gates Ian1

Affiliation:

1. University of Calgary

Abstract

Abstract Steam circulation in the early stages of Steam-Assisted Gravity Drainage (SAGD) is crucial for establishing hydraulic communication between the injector and producer well and for the future development of the steam chamber. Steam is the carrier of enthalpy to the reservoir, and thus, the evolution of pressure, temperature, and steam quality is important for heat transfer efficiency. In the simulation of the circulation phase (start-up), most companies in Alberta neglect the heat loss around the wellbore in the vertical/build section of the well and assume a steam quality for the lateral section of the well. Also, most of the simulations found in the literature assume a source-sink approach where the frictional pressure drops along the wellbore and the heat conduction between the wellbore and the reservoir are negligible. In this paper, the steam circulation phase of a SAGD well pair is examined in detail, taking into account heat loss around the wellbore in the vertical/build section and heat transfer and fluid losses in the lateral section of the well pair. In the model developed, wellbore hydraulics is also accounted for by using a discretized wellbore model within a fully implicit coupled thermal reservoir simulator. Field data from the circulation phase or warm up phase of a SAGD well pair at the Lindbergh SAGD project was history-matched to better understand the effect of wellbore hydraulics and heat loss between the dual completion string design and wellbore. This research will help Pengrowth Energy Corporation take into account new operating strategies for future SAGD well pairs.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3