A Tracing Algorithm for Flow Diagnostics on Fully Unstructured Grids With Multipoint Flux Approximation

Author:

Zhang Zhao1,Geiger Sebastian1,Rood Margaret2,Jacquemyn Carl2,Jackson Matthew2,Hampson Gary2,De Carvalho Felipe Moura3,Marques Machado Silva Clarissa Coda3,Machado Silva Julio Daniel3,Costa Sousa Mario3

Affiliation:

1. Heriot-Watt University

2. Imperial College London

3. University of Calgary

Abstract

Summary Flow diagnostics is a common way to rank and cluster ensembles of reservoir models depending on their approximate dynamic behavior before beginning full-physics reservoir simulation. Traditionally, they have been performed on corner-point grids inherent to geocellular models. The rapid-reservoir-modeling (RRM) concept aims at fast and intuitive prototyping of geologically realistic reservoir models. In RRM, complex reservoir heterogeneities are modeled as discrete volumes bounded by surfaces that are sketched in real time. The resulting reservoir models are discretized by use of fully unstructured tetrahedral meshes where the grid conforms to the reservoir geometry, hence preserving the original geological structures that have been modeled. This paper presents a computationally efficient work flow for flow diagnostics on fully unstructured grids. The control-volume finite-element method (CVFEM) is used to solve the elliptic pressure equation. The flux field is a multipoint flux approximation (MPFA). A new tracing algorithm is developed on a reduced monotone acyclic graph for the hyperbolic transport equations of time of flight (TOF) and tracer distributions. An optimal reordering technique is used to deal with each control volume locally such that the hyperbolic equations can be computed in an efficient node-by-node manner. This reordering algorithm scales linearly with the number of unknowns. The results of these computations allow us to estimate swept-reservoir volumes, injector/producer pairs, well-allocation factors, flow capacity, storage capacity, and dynamic Lorenz coefficients, which all help approximate the dynamic reservoir behavior. The total central-processing-unit (CPU) time, including grid generation and flow diagnostics, is typically a few seconds for meshes with O (100,000) unknowns. Such fast calculations provide, for the first time, real-time feedback in the dynamic reservoir behavior while models are prototyped.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3