Permeability Analysis of Hydrate-Bearing Porous Media Considering the Effect of Phase Transition and Mechanical Strain during the Shear Process

Author:

Zhou S. S.1,Li M.1,Wu P.1,Liu Y.2,Zhang L. X.1,Yang L.1,Li Y. H.1,Zhao J. F.1,Song Y. C.3

Affiliation:

1. Dalian University of Technology

2. Dalian University of Technology (Corresponding author; email: liuyu@dlut.edu.cn)

3. Dalian University of Technology (Corresponding author; email: songyc@dlut.edu.cn)

Abstract

Summary The permeability characteristics of hydrate-bearing reservoirs are critical factors governing gas and water flow during gas hydrate exploitation. Herein, X-ray microcomputed tomography (CT) and the pore network model (PNM) are applied to study the dynamic gas and water relative permeabilities (krg and krw) of hydrate-bearing porous media during the shear process. As such, the dynamic region extraction method of hydrate-bearing porous media under continuous shear is adopted by considering deformation in the vertical direction. The results show that krw and krg of hydrate-bearing porous media are influenced by the effect of disordered sand particle movement under axial strain. Declines in the critical pore structure factors (pore space connectivity, pore size, and throat size) contribute to the reduction in krw and the increase in krg. However, krg decreases during the shear process at a high water saturation (Sw) because of the high threshold pressure and flow channel blockage. In addition, the connate water saturation (Swc) continuously increases during the shear process. Swc is influenced by pore size, throat size, and flow channel blockage. Moreover, the preferential flow direction of krg and krw changes during the continuous shear process. The results of dynamic permeability evolution during the continuous shear process under triaxial stress provide a reference for pore-scale gas and water flow regulation analysis.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3