Pilot-Scale Experimental Study of Gas Migration in Wellbores

Author:

Rao Sai Sashankh1,Samdani Ganesh Arunkumar2,Penny Glenn3,Wu Qian1,Wileman Angel B.4,Beck Griffin C.4,Bhagwat Swanand M.4,Gupta V. Paul1

Affiliation:

1. ExxonMobil Upstream Research Company

2. ExxonMobil Services and Technology Pvt. Ltd.

3. Contractor to ExxonMobil Upstream Research Company

4. Southwest Research Institute

Abstract

Abstract Gas migration velocity impacts the planning of pressurized mud cap drilling (PMCD) as it plays a pivotal role in the selection of fluid volumes and logistics. A pilot-scale experimental investigation of gas migration under downhole conditions (up to 3,600 psi, 240°F) in water, oils, and low-density drilling fluids is presented. While bubble-rise phenomena have been studied at near atmospheric pressures, the experimental setup and measurement method for high-temperature, high-pressure gas migration is rare. Experiments were performed using three test apparatuses: two separate pressurized lengths of 3-inch pipe, one 10-ft long and the other 18-ft long, as well as a unique high-pressure, high-temperature rotating test section (RTS). The RTS is 10-ft long, having a 6 inch × 4 inch eccentric annular geometry with the inner pipe capable of rotation. The inclination of all test sections can be varied. Gas was injected from the bottom through either a 1/8-inch diameter pressurized-injection port or a liquid-gas swap mechanism i.e. zero-velocity injection. Gas migration was recorded using a camera system or gamma-ray densitometers (GRDs). Some of the key results and insights from the testing are: (1) the gas migration rate and bubble length decrease with an increase in pressure, (2) the gas migration rate is higher in inclined vs. vertical sections, (3) bubble breakup occurs as pressure increases and interfacial tension decreases, (4) the inclination of the fluid column delays bubble breakup, and (5) high viscosity hinders bubble breakup. A key observation from the testing was that Taylor bubbles that may form during the initial phase of gas entering the annulus are likely to break up under downhole conditions of high pressure, low interfacial tension, and typical field mud viscosities, resulting in much lower gas migration rates during PMCD than the commonly used industry correlations. Another observation was that the practical length limitation of the test articles prevents us from observing the full evolution of gas bubble breakup. The results seen here are in line with our previous simulation work (Samdani et al., 2021, 2022).

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3