Numerical Simulation and Modeling of Critical Sand-Deposition Velocity for Solid/Liquid Flow

Author:

Dabirian Ramin1,Arabnejad Khanouki Hadi1,Mohan Ram S.1,Shoham Ovadia1

Affiliation:

1. The University of Tulsa

Abstract

Summary Efficient transport of sand or cuttings is very important in the oil and gas industry, and the fluid velocity in these processes should be sufficiently high to keep particles continuously moving along the pipe. This minimum fluid velocity below which particles deposit—defined as the critical velocity—depends on various factors, including flow regime, particle size, particle concentration, phase velocities, and fluid viscosity. The objective of this study is to investigate the effect of parameters such as particle size and liquid viscosity on solid/particle transport in horizontal pipelines by use of computational-fluid-dynamics (CFD) simulations and to validate the numerical-model predictions with experimental data. Also, a mechanistic model that is based on force balance is proposed to predict the critical velocity under various experimental conditions. CFD simulations have been conducted with a commercially available software (ANSYS-FLUENT). An Eulerian model with a k-ω shear-stress transport (SST) turbulence-closure model is used to simulate the fluid flow while particles are tracked as the Lagrangian phase. In these simulations, an eddy-interaction model is included to consider the effect of flow turbulence on particle tracking. The simulations are created for a 0.05-m pipe diameter with a 4-m length. The simulations are initialized at relatively high fluid velocity, which is gradually reduced until the particle velocity drops below the acceptable critical velocity. The CFD simulation and proposed mechanistic model results are validated with experimental data from literature (Najmi 2015; Najmi et al. 2016) for two particle sizes and multiple liquid viscosities. The simulation and model results show that, depending on the flow regimes (laminar or turbulent) and particle size, the critical velocity demonstrates a similar trend with carrier liquid viscosity as that of the experimental data. However, both the CFD and developed models show poor performance for higher particle size (600 µm). Also, the CFD simulations, experimental data, and proposed-model results are compared with three models currently used in the industry, namely, the Oroskar and Turian (1980) model, the Salama (2000) model, and the Danielson (2007) model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3